1,890 research outputs found

    Hepatitis in refugees who settle in Australia

    Get PDF
    Copyright to Australian Family Physician. Reproduced with permission. Permission to reproduce must be sought from the publisher, The Royal Australian College of General Practitioners.BACKGROUND The World Health Organisation estimates that 2 billion people have been infected with hepatitis B and about 180 million people infected with hepatitis C worldwide. More than 350 million have chronic hepatitis B and 130 million have chronic hepatitis C infection. Most infections of hepatitis B and C are from unsafe injection practices, both medical and nonmedical; from household contacts; or, in the case of hepatitis B, from ‘vertical’ transmission from mother to child. OBJECTIVE This article discusses screening and management of hepatitis B and C in refugees who settle in Australia. DISCUSSION Most people carrying hepatitis will be asymptomatic with infection detected by screening. Refugees need counselling, education and support to come to terms with the implications of hepatitis B and C for both themselves and their families. In Australia both viruses can be treated in those with active infection and general practitioners can be involved in diagnosis, follow up and shared care management.Jill Benson, William Donohu

    Aerothermodynamic radiation studies

    Get PDF
    We have built and made operational a 6 in. electric arc driven shock tube which alloys us to study the non-equilibrium radiation and kinetics of low pressure (0.1 to 1 torr) gases processed by 6 to 12 km/s shock waves. The diagnostic system allows simultaneous monitoring of shock radiation temporal histories by a bank of up to six radiometers, and spectral histories with two optical multi-channel analyzers. A data set of eight shots was assembled, comprising shocks in N2 and air at pressures between 0.1 and 1 torr and velocities of 6 to 12 km/s. Spectrally resolved data was taken in both the non-equilibrium and equilibrium shock regions on all shots. The present data appear to be the first spectrally resolved shock radiation measurements in N2 performed at 12 km/s. The data base was partially analyzed with salient features identified

    Self-assembly of the simple cubic lattice with an isotropic potential

    Full text link
    Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures (Phys. Rev. Lett. 95, 228301 (2005), Phys. Rev. E 73, 011406 (2006)), we present an isotropic pair potential V(r)V(r) for a three-dimensional many-particle system whose classical ground state is the low-coordinated simple cubic (SC) lattice. This result is part of an ongoing pursuit by the authors to develop analytical and computational tools to solve statistical-mechanical inverse problems for the purpose of achieving targeted self-assembly. The purpose of these methods is to design interparticle interactions that cause self-assembly of technologically important target structures for applications in photonics, catalysis, separation, sensors and electronics. We also show that standard approximate integral-equation theories of the liquid state that utilize pair correlation function information cannot be used in the reverse mode to predict the correct simple cubic potential. We report in passing optimized isotropic potentials that yield the body-centered cubic and simple hexagonal lattices, which provide other examples of non-close-packed structures that can be assembled using isotropic pair interactions.Comment: 16 pages, 12 figures. Accepted for publication in Physical Review

    ZnSe/GaAs(001) heterostructures with defected interfaces: structural, thermodynamic and electronic properties

    Full text link
    We have performed accurate \emph{ab--initio} pseudopotential calculations for the structural and electronic properties of ZnSe/GaAs(001) heterostructures with interface configurations accounting for charge neutrality prescriptions. Beside the simplest configurations with atomic interdiffusion we consider also some configurations characterized by As depletion and cation vacancies, motivated by the recent successfull growth of ZnSe/GaAs pseudomorphic structures with minimum stacking fault density characterized by the presence of a defected (Zn,Ga)Se alloy in the interface region. We find that--under particular thermodynamic conditions--some defected configurations are favoured with respect to undefected ones with simple anion or cation mixing, and that the calculated band offsets for some defected structures are compatible with those measured. Although it is not possible to extract indications about the precise interface composition and vacancy concentration, our results support the experimental indication of (Zn,Ga)Se defected compounds in high-quality ZnSe/GaAs(001) heterojunctions with low native stacking fault density. The range of measured band offset suggests that different atoms at interfaces rearrange, with possible presence of vacancies, in such a way that not only local charges but also ionic dipoles are vanishing.Comment: 26 pages. 5 figures, revised version, in press (Physical Review B

    New Pseudo-Phase Structure for α\alpha-Pu

    Full text link
    In this paper we propose a new pseudo-phase crystal structure, based on an orthorhombic distortion of the diamond structure, for the ground-state α\alpha-phase of plutonium. Electronic-structure calculations in the generalized-gradient approximation give approximately the same total energy for the two structures. Interestingly, our new pseudo-phase structure is the same as the Pu γ\gamma-phase structure except with very different b/a and c/a ratios. We show how the contraction relative to the γ\gamma phase, principally in the zz direction, leads to an α\alpha-like structure in the [0,1,1] plane. This is an important link between two complex structures of plutonium and opens new possibilities for exploring the very rich phase diagram of Pu through theoretical calculations

    Million-atom molecular dynamics simulation by order-N electronic structure theory and parallel computation

    Full text link
    Parallelism of tight-binding molecular dynamics simulations is presented by means of the order-N electronic structure theory with the Wannier states, recently developed (J. Phys. Soc. Jpn. 69,3773 (2000)). An application is tested for silicon nanocrystals of more than millions atoms with the transferable tight-binding Hamiltonian. The efficiency of parallelism is perfect, 98.8 %, and the method is the most suitable to parallel computation. The elapse time for a system of 2×1062\times 10^6 atoms is 3.0 minutes by a computer system of 64 processors of SGI Origin 3800. The calculated results are in good agreement with the results of the exact diagonalization, with an error of 2 % for the lattice constant and errors less than 10 % for elastic constants.Comment: 5 pages, 3 figure

    Mott-Superfluid transition in bosonic ladders

    Full text link
    We show that in a commensurate bosonic ladder, a quantum phase transition occurs between a Mott insulator and a superfluid when interchain hopping increases. We analyse the properties of such a transition as well as the physical properties of the two phases. We discuss the physical consequences for experimental systems such as Josephson Junction arrays.Comment: 4 pages, 2 figures, revtex

    Structural, elastic and thermal properties of cementite (Fe3_3C) calculated using Modified Embedded Atom Method

    Full text link
    Structural, elastic and thermal properties of cementite (Fe3_3C) were studied using a Modified Embedded Atom Method (MEAM) potential for iron-carbon (Fe-C) alloys. Previously developed Fe and C single element potentials were used to develop an Fe-C alloy MEAM potential, using a statistically-based optimization scheme to reproduce structural and elastic properties of cementite, the interstitial energies of C in bcc Fe as well as heat of formation of Fe-C alloys in L12_{12} and B1_1 structures. The stability of cementite was investigated by molecular dynamics simulations at high temperatures. The nine single crystal elastic constants for cementite were obtained by computing total energies for strained cells. Polycrystalline elastic moduli for cementite were calculated from the single crystal elastic constants of cementite. The formation energies of (001), (010), and (100) surfaces of cementite were also calculated. The melting temperature and the variation of specific heat and volume with respect to temperature were investigated by performing a two-phase (solid/liquid) molecular dynamics simulation of cementite. The predictions of the potential are in good agreement with first-principles calculations and experiments.Comment: 12 pages, 9 figure
    • …
    corecore