2,722 research outputs found

    On the parameterization dependence of the energy momentum tensor and the metric

    Get PDF
    We use results by Kirilin to show that in general relativity the nonleading terms in the energy-momentum tensor of a particle depends on the parameterization of the gravitational field. While the classical metric that is calculated from this source, used to define the leading long-distance corrections to the metric, also has a parameteriztion dependence, it can be removed by a coordinate change. Thus the classical observables are parameterization independent. The quantum effects that emerge within the same calculation of the metric also depend on the parameterization and a full quantum calculation requires the inclusion of further diagrams. However, within a given parameterization the quantum effects calculated by us in a previous paper are well defined. Flaws of Kirilin's proposed alternate metric definition are described and we explain why the diagrams that we calculated are the appropriate ones.Comment: 8 pages, 2 figure

    On the Ultraviolet Behaviour of Newton's constant

    Full text link
    We clarify a point concerning the ultraviolet behaviour of the Quantum Field Theory of gravity, under the assumption of the existence of an ultraviolet Fixed Point. We explain why Newton's constant should to scale like the inverse of the square of the cutoff, even though it is technically inessential. As a consequence of this behaviour, the existence of an UV Fixed Point would seem to imply that gravity has a built-in UV cutoff when described in Planck units, but not necessarily in other units.Comment: 8 pages; CQG class; minor changes and rearrangement

    The Electromagnetic Mass Differences of Pions and Kaons

    Get PDF
    We use the Cottingham method to calculate the pion and kaon electromagnetic mass differences with as few model dependent inputs as possible. The constraints of chiral symmetry at low energy, QCD at high energy and experimental data in between are used in the dispersion relation. We find excellent agreement with experiment for the pion mass difference. The kaon mass difference exhibits a strong violation of the lowest order prediction of Dashen's theorem, in qualitative agreement with several other recent calculations.Comment: 40 pages, Latex, needs axodraw. and psfig. macros, 4 figure

    Fermion masses in noncommutative geometry

    Get PDF
    Recent indications of neutrino oscillations raise the question of the possibility of incorporating massive neutrinos in the formulation of the Standard Model (SM) within noncommutative geometry (NCG). We find that the NCG requirement of Poincare duality constrains the numbers of massless quarks and neutrinos to be unequal unless new fermions are introduced. Possible scenarios in which this constraint is satisfied are discussed.Comment: 4 pages, REVTeX; typos are corrected in (19), "Possible Solutions" and "Conclusion" are modified; additional calculational details are included; references are update

    Photon-Photon Scattering, Pion Polarizability and Chiral Symmetry

    Get PDF
    Recent attempts to detect the pion polarizability via analysis of γγππ\gamma\gamma\rightarrow\pi\pi measurements are examined. The connection between calculations based on dispersion relations and on chiral perturbation theory is established by matching the low energy chiral amplitude with that given by a full dispersive treatment. Using the values for the polarizability required by chiral symmetry, predicted and experimental cross sections are shown to be in agreement.Comment: 21 pages(+10 figures available on request), LATEX, UMHEP-38

    Cosmological Consequences of String Axions

    Full text link
    Axion fluctuations generated during inflation lead to isocurvature and non-Gaussian temperature fluctuations in the cosmic microwave background radiation. Following a previous analysis for the model independent string axion we consider the consequences of a measurement of these fluctuations for two additional string axions. We do so independent of any cosmological assumptions except for the axions being massless during inflation. The first axion has been shown to solve the strong CP problem for most compactifications of the heterotic string while the second axion, which does not solve the strong CP problem, obeys a mass formula which is independent of the axion scale. We find that if gravitational waves interpreted as arising from inflation are observed by the PLANCK polarimetry experiment with a Hubble constant during inflation of H_inf \apprge 10^13 GeV the existence of the first axion is ruled out and the second axion cannot obey the scale independent mass formula. In an appendix we quantitatively justify the often held assumption that temperature corrections to the zero temperature QCD axion mass may be ignored for temperatures T \apprle \Lambda_QCD.Comment: 27 pages, 4 figures; v2: References corrected; v3: Assumptions simplified, minor corrections, conclusions unchange

    Classical Physics and Quantum Loops

    Get PDF
    The standard picture of the loop expansion associates a factor of h-bar with each loop, suggesting that the tree diagrams are to be associated with classical physics, while loop effects are quantum mechanical in nature. We discuss examples wherein classical effects arise from loop contributions and display the relationship between the classical terms and the long range effects of massless particles.Comment: 15 pages, 3 figure

    Asymptotic Limits and Structure of the Pion Form Factor

    Get PDF
    We use dispersive techniques to address the behavior of the pion form factor as Q2Q^2 \to \infty and Q20Q^2 \to 0. We perform the matching with the constraints of perturbative QCD and chiral perturbation theory in the high energy and low energy limits, leading to four sum rules. We present a version of the dispersive input which is consistent with the data and with all theoretical constraints. The results indicate that the asymptotic perturbative QCD limit is approached relatively slowly, and give a model independent determination of low energy chiral parameters.Comment: 8 pages, Latex, 2 figure

    Baryon magnetic moments and sigma terms in lattice-regularized chiral perturbation theory

    Get PDF
    An SU(3) chiral Lagrangian for the lightest decuplet of baryons is constructed on a discrete lattice of spacetime points, and is added to an existing lattice Lagrangian for the lightest octets of mesons and baryons. A nonzero lattice spacing renders all loop integrations finite, and the continuum limit of any physical observable is identical to the result obtained from dimensional regularization. Chiral symmetry and gauge invariance are preserved even at nonzero lattice spacing. Specific calculations discussed here include the non-renormalization of a conserved vector current, the magnetic moments of octet baryons, and the pi N and KN sigma terms that relate to the nucleon's strangeness content. The quantitative difference between physics at a nonzero lattice spacing and physics in the continuum limit is easily computed, and it represents an expectation for the size of discretization errors in corresponding lattice QCD simulations.Comment: 19 pages, 5 figures, one paragraph added to introduction, to appear in Phys Rev

    Enhanced chiral logarithms in partially quenched QCD

    Get PDF
    I discuss the properties of pions in ``partially quenched'' theories, i.e. those in which the valence and sea quark masses, mVm_V and mSm_S, are different. I point out that for lattice fermions which retain some chiral symmetry on the lattice, e.g. staggered fermions, the leading order prediction of the chiral expansion is that the mass of the pion depends only on mVm_V, and is independent of mSm_S. This surprising result is shown to receive corrections from loop effects which are of relative size mSlnmVm_S \ln m_V, and which thus diverge when the valence quark mass vanishes. Using partially quenched chiral perturbation theory, I calculate the full one-loop correction to the mass and decay constant of pions composed of two non-degenerate quarks, and suggest various combinations for which the prediction is independent of the unknown coefficients of the analytic terms in the chiral Lagrangian. These results can also be tested with Wilson fermions if one uses a non-perturbative definition of the quark mass.Comment: 14 pages, 3 figures, uses psfig. Typos in eqs (18)-(20) corrected (alpha_4 is replaced by alpha_4/2
    corecore