7,875 research outputs found

    Better educational signage could reduce disturbance of resting dolphins

    Get PDF
    Spinner dolphins on Hawai‘i Island’s west coast (Stenella longirostris longirostris) rest by day in protected bays that are increasingly popular for recreation. Because more frequent interactions of people with these dolphins is likely to reduce rest for dolphins and to explain recent decline in dolphin abundance, the National Oceanic and Atmospheric Administration (NOAA) proposed stricter rules regarding interactions with spinner dolphins near the main Hawaiian Islands and plans to increase enforcement. Simultaneous investment in public education about both interaction rules and their biological rationale has been and is likely to be relatively low. To test the hypothesis that more educational signage will reduce human-generated disturbance of dolphins, a paper questionnaire was distributed to 351 land-based, mostly unguided visitors at three dolphin resting bays on Hawai‘i Island’s west coast. Responses indicated that visitors wanted to see dolphins, were ignorant of interaction rules, were likely to read signs explaining rules and their biological rationales, and were likely to follow known rules. Therefore, investment in effective educational signage at dolphin resting bays is recommended as one way to support conservation of spinner dolphins on Hawai‘i Island’s west coast and similar sites in the Hawaiian archipelago

    Parity violation in quasielastic electron-nucleus scattering within the relativistic impulse approximation

    Get PDF
    We study parity violation in quasielastic (QE) electron-nucleus scattering using the relativistic impulse approximation. Different fully relativistic approaches have been considered to estimate the effects associated with the final-state interactions. We have computed the parity-violating quasielastic (PVQE) asymmetry and have analyzed its sensitivity to the different ingredients that enter in the description of the reaction mechanism: final-state interactions, nucleon off-shellness effects, current gauge ambiguities. Particular attention has been paid to the description of the weak neutral current form factors. The PVQE asymmetry is proven to be an excellent observable when the goal is to get precise information on the axial-vector sector of the weak neutral current. Specifically, from measurements of the asymmetry at backward scattering angles good knowledge of the radiative corrections entering in the isovector axial-vector sector can be gained. Finally, scaling properties shown by the interference γ−Z\gamma-Z nuclear responses are also analyzed.Comment: 15 pages, 11 figure

    Decomposition of entanglement entropy in lattice gauge theory

    Full text link
    We consider entanglement entropy between regions of space in lattice gauge theory. The Hilbert space corresponding to a region of space includes edge states that transform nontrivially under gauge transformations. By decomposing the edge states in irreducible representations of the gauge group, the entropy of an arbitrary state is expressed as the sum of three positive terms: a term associated with the classical Shannon entropy of the distribution of boundary representations, a term that appears only for non-Abelian gauge theories and depends on the dimension of the boundary representations, and a term representing nonlocal correlations. The first two terms are the entropy of the edge states, and depend only on observables measurable at the boundary. These results are applied to several examples of lattice gauge theory states, including the ground state in the strong coupling expansion of Kogut and Susskind. In all these examples we find that the entropy of the edge states is the dominant contribution to the entanglement entropy.Comment: 8 pages. v2: added references, expanded derivation, matches PRD versio

    Parity violation and dynamical relativistic effects in (e⃗,e′N)(\vec{e},e'N) reactions

    Get PDF
    It is well known that coincidence quasielastic (e⃗,e′N)(\vec{e},e'N) reactions are not appropriate to analyze effects linked to parity violation due the presence of the fifth electromagnetic (EM) response RTL′R^{TL'}. Nevertheless, in this work we develop a fully relativistic approach to be applied to parity-violating (PV) quasielastic (e⃗,e′N)(\vec{e},e'N) processes. This is of importance as a preliminary step in the subsequent study of inclusive quasielastic PV (e⃗,e′)(\vec{e},e') reactions. Moreover, our present analysis allows us to disentangle effects associated with the off-shell character of nucleons in nuclei, gauge ambiguities and the role played by the lower components in the nucleon wave functions, i.e., dynamical relativistic effects. This study can help in getting clear information on PV effects. Particular attention is paid to the relativistic plane-wave impulse approximation where the explicit expressions for the PV single-nucleon responses are shown for the first time.Comment: 39 pages, 9 figure

    Global analysis of parity-violating asymmetry data for elastic electron scattering

    Get PDF
    We perform a statistical analysis of the full set of parity-violating asymmetry data for elastic electron scattering including the most recent high precision measurement from QQ-weak. Given the basis of the present analysis, our estimates appear to favor non-zero vector strangeness, specifically, positive (negative) values for the electric (magnetic) strange form factors. We also provide an accurate estimate of the axial-vector nucleon form factor at zero momentum transfer, GAep(0)G_A^{ep}(0). Our study shows GAep(0)G_A^{ep}(0) to be importantly reduced with respect to the currently accepted value. We also find our analysis of data to be compatible with the Standard Model values for the weak charges of the proton and neutron.Comment: 6 pages, 4 figures, 2 tables. Accepted for publication in PR

    Time-Series Analysis of Super-Kamiokande Measurements of the Solar Neutrino Flux

    Full text link
    The Super-Kamiokande Consortium has recently released data suitable for time-series analysis. The binning is highly regular: the power spectrum of the acquisition times has a huge peak (power S > 120) at the frequency (in cycles per year) 35.98 (period 10.15 days), where power measurements are such that the probability of obtaining a peak of strength S or more by chance at a specified frequency is exp(-S). This inevitably leads to severe aliasing of the power spectrum. The strongest peak in the range 0 - 100 in a power spectrum formed by a likelihood procedure is at 26.57 (period 13.75 days) with S = 11.26. For the range 0 - 40, the second-strongest peak is at 9.42 (period 38.82 days) with S = 7.3. Since 26.57 + 9.42 = 35.99, we conclude that the weaker peak at 9.42 is an alias of the stronger peak at 26.57. We note that 26.57 falls in the band 26.36 - 27.66, formed from twice the range of synodic rotation frequencies of an equatorial section of the Sun for normalized radius larger than 0.1. Oscillations at twice the rotation frequency, attributable to "m = 2" structures, are not uncommon in solar data. We find from the shuffle test that the probability of obtaining a peak of S = 11.26 or more by chance in this band is 0.1 %. This new result therefore supports at the 99.9% confidence level previous evidence, found in Homestake and GALLEX-GNO data, for rotational modulation of the solar neutrino flux. The frequency 25.57 points to a source of modulation at or near the tachocline.Comment: 15 pages, 8 figure

    Mass flow through solid 4He induced by the fountain effect

    Full text link
    Using an apparatus that allows superfluid liquid 4He to be in contact with hcp solid \4he at pressures greater than the bulk melting pressure of the solid, we have performed experiments that show evidence for 4He mass flux through the solid and the likely presence of superfluid inside the solid. We present results that show that a thermomechanical equilibrium in quantitative agreement with the fountain effect exists between two liquid reservoirs connected to each other through two superfluid-filled Vycor rods in series with a chamber filled with solid 4He. We use the thermomechanical effect to induce flow through the solid and measure the flow rate. On cooling, mass flux appears near T = 600 mK and rises smoothly as the temperature is lowered. Near T = 75 mK a sharp drop in the flux is present. The flux increases as the temperature is reduced below 75 mK. We comment on possible causes of this flux minimum.Comment: 20 pages, 22 figures, 7 table

    A simple model for NN correlations in quasielastic lepton-nucleus scattering

    Get PDF
    We present a covariant extension of the relativistic Fermi gas model which incorporates correlation effects in nuclei. Within this model, inspired by the BCS descriptions of systems of fermions, we obtain the nuclear spectral function and from it the superscaling function for use in treating high-energy quasielastic electroweak processes. Interestingly, this model has the capability to yield the asymmetric tail seen in the experimental scaling function.Comment: 11 pages, 6 figures, Proceedings of the Twenty Seventh International Workshop on Nuclear Theory, June 23 - 28, 2008, Rila mountains, Bulgari

    Thermodynamic inequalities in superfluid

    Full text link
    We investigate general thermodynamic stability conditions for the superfluid. This analysis is performed in an extended space of thermodynamic variables containing (along with the usual thermodynamic coordinates such as pressure and temperature) superfluid velocity and momentum density. The stability conditions lead to thermodynamic inequalities which replace the Landau superfluidity criterion at finite temperatures.Comment: 7 pages, 1 figur
    • …
    corecore