10,734 research outputs found
Early detection of a solar flare - A study of X-ray, extreme ultraviolet, H-alpha, and solar radio emission from solar flares
X ray, extreme ultraviolet, H alpha, and radio emission from solar flares evaluated for use in satellite flare alarm syste
Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources
An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources
Vortex nucleation by collapsing bubbles in Bose-Einstein condensates
The nucleation of vortex rings accompanies the collapse of ultrasound bubbles
in superfluids. Using the Gross-Pitaevskii equation for a uniform condensate we
elucidate the various stages of the collapse of a stationary spherically
symmetric bubble and establish conditions necessary for vortex nucleation. The
minimum radius of the stationary bubble, whose collapse leads to vortex
nucleation, was found to be about 28 healing lengths. The time after which the
nucleation becomes possible is determined as a function of bubble's radius. We
show that vortex nucleation takes place in moving bubbles of even smaller
radius if the motion made them sufficiently oblate.Comment: 4 pages, 5 figure
Parity violation in quasielastic electron-nucleus scattering within the relativistic impulse approximation
We study parity violation in quasielastic (QE) electron-nucleus scattering
using the relativistic impulse approximation. Different fully relativistic
approaches have been considered to estimate the effects associated with the
final-state interactions. We have computed the parity-violating quasielastic
(PVQE) asymmetry and have analyzed its sensitivity to the different ingredients
that enter in the description of the reaction mechanism: final-state
interactions, nucleon off-shellness effects, current gauge ambiguities.
Particular attention has been paid to the description of the weak neutral
current form factors. The PVQE asymmetry is proven to be an excellent
observable when the goal is to get precise information on the axial-vector
sector of the weak neutral current. Specifically, from measurements of the
asymmetry at backward scattering angles good knowledge of the radiative
corrections entering in the isovector axial-vector sector can be gained.
Finally, scaling properties shown by the interference nuclear
responses are also analyzed.Comment: 15 pages, 11 figure
Computational convergence of the path integral for real dendritic morphologies
Neurons are characterised by a morphological structure unique amongst biological cells, the core of which is the dendritic tree. The vast number of dendritic geometries, combined with heterogeneous properties of the cell membrane, continue to challenge scientists in predicting neuronal input-output relationships, even in the case of sub-threshold dendritic currents. The Greenâs function obtained for a given dendritic geometry provides this functional relationship for passive or quasi-active dendrites and can be constructed by a sum-over-trips approach based on a path integral formalism. In this paper, we introduce a number of efficient algorithms for realisation of the sum-over-trips framework and investigate the convergence of these algorithms on different dendritic geometries. We demonstrate that the convergence of the trip sampling methods strongly depends on dendritic morphology as well as the biophysical properties of the cell membrane. For real morphologies, the number of trips to guarantee a small convergence error might become very large and strongly affect computational efficiency. As an alternative, we introduce a highly-efficient matrix method which can be applied to arbitrary branching structures
Better educational signage could reduce disturbance of resting dolphins
Spinner dolphins on Hawaiâi Islandâs west coast (Stenella longirostris longirostris) rest by day in protected bays that are increasingly popular for recreation. Because more frequent interactions of people with these dolphins is likely to reduce rest for dolphins and to explain recent decline in dolphin abundance, the National Oceanic and Atmospheric Administration (NOAA) proposed stricter rules regarding interactions with spinner dolphins near the main Hawaiian Islands and plans to increase enforcement. Simultaneous investment in public education about both interaction rules and their biological rationale has been and is likely to be relatively low. To test the hypothesis that more educational signage will reduce human-generated disturbance of dolphins, a paper questionnaire was distributed to 351 land-based, mostly unguided visitors at three dolphin resting bays on Hawaiâi Islandâs west coast. Responses indicated that visitors wanted to see dolphins, were ignorant of interaction rules, were likely to read signs explaining rules and their biological rationales, and were likely to follow known rules. Therefore, investment in effective educational signage at dolphin resting bays is recommended as one way to support conservation of spinner dolphins on Hawaiâi Islandâs west coast and similar sites in the Hawaiian archipelago
- âŠ