22 research outputs found

    Incorporation of LNG into Small Gas Networks via FSRUs

    Full text link
    Geopolitical risks on pipeline gas imports, increasing natural gas demand and the need to ensure continuous power supply with ever increasing fluctuating renewable power generation require diversification of gas sources to ensure supply security. With the global liquefied natural gas (LNG) trade increasing every year and natural gas prices remaining relatively low, more and more countries are interested in investing in regasification infrastructure. Establishing a floating storage and regasification unit (FSRU) and importing LNG has several advantages: lower cost compared to an onshore terminal, flexibility in relocation and the availability of short-term contracts all of which help serve small markets. FSRUs can also be operated in standby mode or used as an LNG storage facility. Operating an FSRU as a storage facility while beneficial for small networks introduces the challenges of LNG weathering and managing of the boil-off gas (BOG). To investigate these challenges on operation, a mathematical model is developed to determine the boil-off rate (BOR) over various time frames. The initial BOR is 0.129% of the initial storage volume increased to 0.143% after 10 weeks. Subsequent use of Aspen HYSYS to determine the change in LNG composition determined that Wobbe Index (WI) of the LNG varied from 51.58 to 51.616 MJ/Nm3 after 10 weeks of storage. An annual economic estimation of operating FSRU as a storage facility was carried out determining that the per unit price of gas obtained from regasified LNG is at least 42% lower than the current per unit price of gas in Ireland

    Synthetic Natural Gas Production: Production Cost, Key Cost Factors and Optimal Configuration

    Full text link
    The volatile nature of the renewable energy sources requires energy storage to compensate for the imbalances and to provide reliable base load. Power-to-Methane technology facilitates long-term high capacity renewable energy storage in the form of Synthetic Natural Gas (SNG) in the gas network. Unlike hydrogen, SNG usage in the network has no restrictions and natural gas appliances can operate on SNG. The two inputs required to produce SNG in the methanator are hydrogen and CO2 and they can be obtained from several sources. This leads to multiple possible process flow configurations in SNG production, each of them with varying performance. An optimization model has been developed in GAMS to analyse the performance of these various configurations. The objective of this research is to determine the optimal configuration, key cost factors and their effects on the production cost to identify the areas that require further development for cost reduction. This work also aims to determine the production cost per unit of SNG and the factors with most significant influence on the production cost by implementing a factorial design and a multivariate analysis (analysis of variance) approach. Methanator, electrolyser, biogas upgrader and hydrogen storage are considered as the fundamental process units in this work. The lowest production cost identified in the first year of production is 0.432 €/kWhSNG. The discounted production cost obtained shows that the lowest cost in 20 years from now is 0.143 €/kWhSNG. The variable with the most influence on the production cost is the capex of the methanator followed by the capacity of the methanator

    Decision and Discovery in Defining “Disease”

    Get PDF
    This version (May 17, 2005) was published in its final form as: Schwartz PH. Decision and discovery in defining 'disease'. In: Kincaid H, McKitrick J, editors. Establishing medical reality: essays in the metaphysics and epistemology of biomedical science. Dordrecht: Springer; 2007. p. 47-63. http://dx.doi.org/10.1007/1-4020-5216-2_5The debate over how to analyze the concept of disease has often centered on the question of whether to include a reference to values, in particular the ‘disvalue’of diseases, or whether to avoid such notions. ‘Normativists,’such as King ([1954], 1981) and Culver and Gert (1982) emphasize the undesirability of diseases, while ‘Naturalists,’ most prominently Christopher Boorse (1977, 1987, 1997), instead require just the presence of biological dysfunction. The debate between normativism and naturalism often deteriorates into stalemate, with each side able to point out significant problems with the other. It starts to look as if neither approach can work. In this paper, I argue that the standoff stems from deeply questionable assumptions that have been used to formulate the opposing positions and guide the debate. In the end, I propose an alternative set of guidelines that offer a more constructive way to devise and compare theories

    Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica

    Get PDF
    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state
    corecore