30 research outputs found

    Innate immune receptor NOD2 mediates LGR5+ intestinal stem cell protection against ROS cytotoxicity via mitophagy stimulation

    Get PDF
    International audienceThe nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist muramyl dipeptide (MDP), a peptidoglycan motif common to all bacteria, supports leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)+ intestinal stem cell (ISC) survival through NOD2 activation upon an otherwise lethal oxidative stress-mediated signal. However, the underlying protective mechanisms remain unknown. Here, using irradiation as stressor and primarily murine-derived intestinal organoids as a model system, we show that MDP induced a significant reduction of total and mitochondrial reactive oxygen species (ROS) within ISCs, which was associated with mitophagy induction. ATG16L1 knockout (KO) and NOD2 KO organoids did not benefit from the MDP-induced cytoprotection. We confirmed the MDP-dependent induction of ISC mitophagy upon stress in vivo. These findings elucidate the NOD2-mediated mechanism of cytoprotection involving the clearance of the lethal excess of ROS molecules through mitophagy, triggered by the coordinated activation of NOD2 and ATG16L1 by a nuclear factor ÎșB (NF-ÎșB)-independent pathway

    Calpain Activation by the Shigella flexneri Effector VirA Regulates Key Steps in the Formation and Life of the Bacterium's Epithelial Niche

    Get PDF
    SummaryThe enteropathogen Shigella flexneri invades epithelial cells, leading to inflammation and tissue destruction. We report that Shigella infection of epithelial cells induces an early genotoxic stress, but the resulting p53 response and cell death are impaired due to the bacterium's ability to promote p53 degradation, mainly through calpain protease activation. Calpain activation is promoted by the Shigella virulence effector VirA and dependent on calcium flux and the depletion of the endogenous calpain inhibitor calpastatin. Further, although VirA-induced calpain activity is critical for regulating cytoskeletal events driving bacterial uptake, calpain activation ultimately leads to necrotic cell death, thereby restricting Shigella intracellular growth. Therefore, calpains work at multiple steps in regulating Shigella pathogenesis by disrupting the p53-dependent DNA repair response early during infection and regulating both formation and ultimate death of the Shigella epithelial replicative niche

    Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea

    Get PDF
    Background: Single Nucleotide Polymorphisms (SNPs) can be used as genetic markers for applications such as genetic diversity studies or genetic mapping. New technologies now allow genotyping hundreds to thousands of SNPs in a single reaction. In order to evaluate the potential of these technologies in pea, we selected a custom 384-SNP set using SNPs discovered in Pisum through the resequencing of gene fragments in different genotypes and by compiling genomic sequence data present in databases. We then designed an Illumina GoldenGate assay to genotype both a Pisum germplasm collection and a genetic mapping population with the SNP set. Results: We obtained clear allelic data for more than 92% of the SNPs (356 out of 384). Interestingly, the technique was successful for all the genotypes present in the germplasm collection, including those from species or subspecies different from the P. sativum ssp sativum used to generate sequences. By genotyping the mapping population with the SNP set, we obtained a genetic map and map positions for 37 new gene markers. Conclusion: Our results show that the Illumina GoldenGate assay can be used successfully for high-throughput SNP genotyping of diverse germplasm in pea. This genotyping approach will simplify genotyping procedures for association mapping or diversity studies purposes and open new perspectives in legume genomics

    Divergent adaptive immune responses define two types of long COVID

    Get PDF
    BackgroundThe role of adaptive immune responses in long COVID remains poorly understood, with contrasting hypotheses suggesting either an insufficient antiviral response or an excessive immune response associated with inflammatory damage. To address this issue, we set to characterize humoral and CD4+ T cell responses in long COVID patients prior to SARS-CoV-2 vaccination.MethodsLong COVID patients who were seropositive (LC+, n=28) or seronegative (LC-, n=23) by spike ELISA assay were recruited based on (i) an initial SARS-CoV-2 infection documented by PCR or the conjunction of three major signs of COVID-19 and (ii) the persistence or resurgence of at least 3 symptoms for over 3 months. They were compared to COVID patients with resolved symptoms (RE, n=29) and uninfected control individuals (HD, n=29).ResultsThe spectrum of persistent symptoms proved similar in both long COVID groups, with a trend for a higher number of symptoms in the seronegative group (median=6 vs 4.5; P=0.01). The use a highly sensitive S-flow assay enabled the detection of low levels of SARS-CoV-2 spike-specific IgG in 22.7% of ELISA-seronegative long COVID (LC-) patients. In contrast, spike-specific IgG levels were uniformly high in the LC+ and RE groups. Multiplexed antibody analyses to 30 different viral antigens showed that LC- patients had defective antibody responses to all SARS-CoV-2 proteins tested but had in most cases preserved responses to other viruses. A sensitive primary T cell line assay revealed low but detectable SARS-CoV-2-specific CD4 responses in 39.1% of LC- patients, while response frequencies were high in the LC+ and RE groups. Correlation analyses showed overall strong associations between humoral and cellular responses, with exceptions in the LC- group.ConclusionsThese findings provide evidence for two major types of antiviral immune responses in long COVID. Seropositive patients showed coordinated cellular and humoral responses at least as high as those of recovered patients. In contrast, ELISA-seronegative long COVID patients showed overall low antiviral responses, with detectable specific CD4+ T cells and/or antibodies in close to half of patients (52.2%). These divergent findings in patients sharing a comparable spectrum of persistent symptoms raise the possibility of multiple etiologies in long COVID

    Identification of the chemokine CX3CL1 as a new regulator of malignant cell proliferation in epithelial ovarian cancer.

    Get PDF
    BACKGROUND:Little is known about the molecules that contribute to the growth of epithelial ovarian carcinomas (EOC), which remain the most lethal gynecological cancer in women. The chemokine Fractalkine/CX(3)CL1 has been widely reported to play a biologically relevant role in tumor growth and spread. We report here the first investigation of the expression and role of CX(3)CL1 in EOC. RESULTS:Epithelial cells from the surface of the ovary and the Fallopian tubes and from benign, borderline and malignant tumors all stained positive for CX(3)CL1. In tumor specimens from 54 women who underwent surgical treatment for EOC diagnosis, CX(3)CL1 immunoreactivity was unevenly distributed in epithelial tumor cells, and ranged from strong (33%) to absent (17%). This uneven distribution of CX(3)CL1 did not reflect the morphological heterogeneity of EOC. It was positively correlated with the proliferation index Ki-67 and with GILZ (glucocorticoid-induced leucine zipper), previously identified as an activator of the proliferation of malignant EOC cells. Hierarchical clustering analysis, including age at diagnosis, tumor grade, FIGO stage, Ki-67 index, CX(3)CL1, SDF-1/CXCL12 and GILZ immunostaining scores, distinguished two major clusters corresponding to low and high levels of proliferation and differing in terms of GILZ and CX(3)CL1 expression. GILZ overexpression in the carcinoma-derived BG1 cell line resulted in parallel changes in CX(3)CL1 products. Conversely, CX(3)CL1 promoted through its binding to CX(3)CR1 AKT activation and proliferation in BG1 cells. In a mouse subcutaneous xenograft model, the overexpression of GILZ was associated with higher expression of CX(3)CL1 and faster tumor growth. CONCLUSION:Our findings highlight the previously unappreciated constitutive expression of CX(3)CL1 preceding tumorigenesis in ovarian epithelial cells. Together with GILZ, this chemokine emerges as a regulator of cell proliferation, which may be of potential clinical relevance for the selection of the most appropriate treatment for EOC patients

    Contribution of SAXS to microstructural investigation of newly developed Mg-Rare Earth alloys for structural applications.

    No full text
    International audienceNew Mg-Y-Gd-Mn alloys, strengthened by a dense fine scale precipitation, have been recently designed for structural applications up to 523 K. The qualitative small-angle X-ray scattering study presented here enlightens the mechanical properties at high temperature of these alloys. Small Guinier-Preston zones have been evidenced in alloys maintained at room temperature after quenching. The metastable phases, studied in parallel using high-resolution transmission electron microscopy and responsible for the good mechanical properties, are difficult to quantify completely owing to their complex microstructure of interconnected globular and faceted precipitates

    Shigella flexneri targets the HP1 subcode through the phosphothreonine lyase OspF

    No full text
    Comment in: Shigella hacks host immune responses by reprogramming the host epigenome. [EMBO J. 2014]Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcriptionInternational audienceHP1 proteins are transcriptional regulators that, like histones, are targets for post-translational modifications defining an HP1-mediated subcode. HP1Îł has multiple phosphorylation sites, including serine 83 (S83) that marks it to sites of active transcription. In a guinea pig model for Shigella enterocolitis, we observed that the defective type III secretion mxiD Shigella flexneri strain caused more HP1Îł phosphorylation in the colon than the wild-type strain. Shigella interferes with HP1 phosphorylation by injecting the phospholyase OspF. This effector interacts with HP1Îł and alters its phosphorylation at S83 by inactivating ERK and consequently MSK1, a downstream kinase. MSK1 that here arises as a novel HP1Îł kinase, phosphorylates HP1Îł at S83 in the context of an MSK1-HP1Îł complex, and thereby favors its accumulation on its target genes. Genome-wide transcriptome analysis reveals that this mechanism is linked to up-regulation of proliferative gene and fine-tuning of immune gene expression. Thus, in addition to histones, bacteria control host transcription by modulating the activity of HP1 proteins, with potential implications in transcriptional reprogramming at the mucosal barrier
    corecore