11 research outputs found

    A respiratory syncytial virus vaccine based on the small hydrophobic protein ectodomain presented with a novel lipid-based formulation is highly immunogenic and safe in adults : a first-in-humans study

    Get PDF
    Background: Respiratory syncytial virus infection can cause lower respiratory tract infection in older adults comparable to influenza, but no vaccines are available. Methods: This was a randomized, observer-blinded, first-in-humans study of a novel synthetic RSV antigen based on the ectodomain of the small hydrophobic glycoprotein (SHe) of RSV subgroup A, formulated with either the lipid and oil-based vaccine platform DepoVax (DPX-RSV[A]) or alum (RSV[A]-Alum), in healthy, 50-64-year-old individuals. Two dose levels (10 or 25 mu g) of SHe with each formulation were compared to placebo. A booster dose was administered on day 56. Results: There was no indication that the vaccine was unsafe. Mild pain, drowsiness, and muscles aches were the most common solicited adverse events (AEs), and the frequencies of the AEs did not increase after dose 2. Robust anti-SHe-specific immune responses were demonstrated in the DPX-RSV(A) 10-mu g and 25-mu g groups (geometric mean titer, approximately 10-fold and 100-fold greater than that of placebo at days 56 and 236, respectively), and responses were sustained in the DPX-RSV(A) 25-mu g group at day 421. Responses to the RSV(A)-Alum vaccines were very low. Conclusions: A novel antigen from the SH protein of RSV, formulated in a lipid and oil-based vaccine platform, was highly immunogenic, with sustained antigen-specific antibody responses, and had an acceptable safety profile

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Healthcare provider awareness, attitudes, beliefs, and behaviors regarding the role of pharmacists as immunizers

    No full text
    We explored perceptions of healthcare providers in Nova Scotia and New Brunswick about pharmacists as immunizers. Pharmacists’ scopes of practice are increasingly broadening to include immunization, and providers and policymakers may find meaning in the lessons we learned. Invitations to participate in our online survey were circulated by professional associations, health authorities, and in social media posts. A total of 204 healthcare providers completed our survey, of whom 59.3% were pharmacists, 17.6% were nurses, and 23.0% were physicians. Nurses (30.6%) and physicians (34.0%) experienced fewer logistical barriers to immunizing compared to pharmacists, 71.1% of whom identified practice logistics as a determinant in offering vaccines to patients (p  < .001). Pharmacists were most supportive of the expansion of their own scope of practice to include the provision of vaccines to adults (95.9%) and children as young as five years (92.6%) compared to nurses (72.2% and 69.4%) and physicians (61.7% and 40.4%) (p  < .001). Diversity of opinion was evident even among pharmacists about whether they should be permitted to vaccinate children younger than five years. Nurse and physician respondents had lower odds of thinking pharmacists have enough training to vaccinate (p  < .001), that vaccines should be given in a pharmacy (p  < .001), and of supporting the expansion of pharmacists’ scope of practice (p  < .001) than pharmacists did in the multivariable analyses. Pharmacists are well-positioned and willing to vaccinate and generally have support from their nurse and physician peers, but logistical challenges and interprofessional complexities persist as barriers to optimizing immunization by pharmacists

    A Randomized Controlled Study to Evaluate the Safety and Reactogenicity of a Novel rVLP-Based Plant Virus Nanoparticle Adjuvant Combined with Seasonal Trivalent Influenza Vaccine Following Single Immunization in Healthy Adults 18–50 Years of Age

    No full text
    Inactivated influenza vaccines efficacy is variable and often poor. We conducted a phase 1 trial (NCT02188810), to assess the safety and immunogenicity of a novel nanoparticle Toll-like receptor 7/8 agonist adjuvant (Papaya Mosaic Virus) at different dose levels combined with trivalent influenza vaccine in healthy persons 18&ndash;50 years of age. Hemagglutination-inhibition assays, antibody to Influenza A virus nucleoprotein and peripheral blood mononuclear cells for measurement of interferon-gamma ELISPOT response to influenza antigens, Granzyme B and IFN&gamma;:IL-10 ratio were measured. The most common adverse events were transient mild to severe injection site pain and no safety signals were observed. A dose-related adjuvant effect was observed. Geometric mean hemagglutination-inhibition titers increased at day 28 in most groups and waned over time, but fold-antibody responses were poor in all groups. Cell mediated immunity results were consistent with humoral responses. The Papaya Mosaic Virus adjuvant in doses of 30 to 240 &micro;g combined with reduced influenza antigen content was safe with no signals up to 3 years after vaccination. A dose-related adjuvant effect was observed and immunogenicity results suggest that efficacy study should be conducted in influenza antigen-na&iuml;ve participants

    A Randomized Controlled Study to Evaluate the Safety and Reactogenicity of a Novel rVLP-Based Plant Virus Nanoparticle Adjuvant Combined with Seasonal Trivalent Influenza Vaccine Following Single Immunization in Healthy Adults 18–50 Years of Age

    No full text
    Inactivated influenza vaccines efficacy is variable and often poor. We conducted a phase 1 trial (NCT02188810), to assess the safety and immunogenicity of a novel nanoparticle Toll-like receptor 7/8 agonist adjuvant (Papaya Mosaic Virus) at different dose levels combined with trivalent influenza vaccine in healthy persons 18&ndash;50 years of age. Hemagglutination-inhibition assays, antibody to Influenza A virus nucleoprotein and peripheral blood mononuclear cells for measurement of interferon-gamma ELISPOT response to influenza antigens, Granzyme B and IFN&gamma;:IL-10 ratio were measured. The most common adverse events were transient mild to severe injection site pain and no safety signals were observed. A dose-related adjuvant effect was observed. Geometric mean hemagglutination-inhibition titers increased at day 28 in most groups and waned over time, but fold-antibody responses were poor in all groups. Cell mediated immunity results were consistent with humoral responses. The Papaya Mosaic Virus adjuvant in doses of 30 to 240 &micro;g combined with reduced influenza antigen content was safe with no signals up to 3 years after vaccination. A dose-related adjuvant effect was observed and immunogenicity results suggest that efficacy study should be conducted in influenza antigen-na&iuml;ve participants

    Influenza vaccine effectiveness against influenza-related hospitalization during a season with mixed outbreaks of four influenza viruses: a test-negative case-control study in adults in Canada

    No full text
    Background The Serious Outcomes Surveillance (SOS) Network was established to monitor seasonal influenza complications among hospitalized Canadian adults and to assess the effectiveness of influenza vaccination against severe outcomes. Here we report age- and strain-specific vaccine effectiveness (VE) in preventing severe outcomes during a season characterized by mixed outbreaks of four different influenza strains. Methods This prospective, multicentre, test-negative case-control study evaluated the VE of trivalent influenza vaccine (TIV) in the prevention of laboratory-confirmed influenza-hospitalization in adults aged ≥16 years (all adults) and adults aged 16–64 years (younger adults). The SOS Network identified hospitalized patients with diagnoses potentially attributable to influenza during the 2011/12 influenza season. Swabs collected at admission were tested by reverse transcriptase polymerase chain reaction (RT PCR) or viral culture to discriminate influenza cases (positive) from controls (negative). VE was calculated as 1-odds ratio (OR) of vaccination in cases versus controls × 100. Results Overall, in all adults, the unadjusted and adjusted VEs of TIV against influenza-hospitalization were 41.8% (95% Confidence Interval [CI]: 26.0, 54.3), and 42.8% (95% CI: 23.8, 57.0), respectively. In younger adults (16–64 years), the unadjusted and adjusted VEs of TIV against influenza-hospitalization were 35.8% (95% CI: 4.5, 56.8) and 33.2% (95% CI: −6.7, 58.2), respectively. In the all adults group, adjusted VE against influenza A/H1N1 was 72.5% (95% CI: 30.5, 89.1), against A/H3N2 was 86.1% (95% CI: 40.1, 96.8), against B/Victoria was 40.5% (95% CI: −28.9, 72.6), and against B/Yamagata was 32.3% (95% CI: −8.3, 57.7). The adjusted estimate of early season VE (from November 1 to March 11) was 54.4% (95% CI: 29.7–70.4), which was higher than late season (from March 11 to May 25) VE estimate (VE: 29.7%, 95% CI: -5.3, 53.1). Conclusions These results suggest that TIV was highly effective against A viruses and moderately effective against B viruses during a mild season characterised by co-circulation of four influenza strains in Canada. Findings underscore the need to provide VE assessment by subtype/lineage as well as the timing of vaccination (early season vs late season) to accurately evaluate vaccine performance and thus guide public health decision-making. Trial registration ClinicalTrials.gov Identifier: NCT01517191. Registration was retrospective and the date of registration was January 17, 2012.Medicine, Faculty ofNon UBCReviewedFacult

    Influenza vaccine effectiveness against influenza-related hospitalization during a season with mixed outbreaks of four influenza viruses: a test-negative case-control study in adults in Canada

    No full text
    Background The Serious Outcomes Surveillance (SOS) Network was established to monitor seasonal influenza complications among hospitalized Canadian adults and to assess the effectiveness of influenza vaccination against severe outcomes. Here we report age- and strain-specific vaccine effectiveness (VE) in preventing severe outcomes during a season characterized by mixed outbreaks of four different influenza strains. Methods This prospective, multicentre, test-negative case-control study evaluated the VE of trivalent influenza vaccine (TIV) in the prevention of laboratory-confirmed influenza-hospitalization in adults aged ≥16 years (all adults) and adults aged 16–64 years (younger adults). The SOS Network identified hospitalized patients with diagnoses potentially attributable to influenza during the 2011/12 influenza season. Swabs collected at admission were tested by reverse transcriptase polymerase chain reaction (RT PCR) or viral culture to discriminate influenza cases (positive) from controls (negative). VE was calculated as 1-odds ratio (OR) of vaccination in cases versus controls × 100. Results Overall, in all adults, the unadjusted and adjusted VEs of TIV against influenza-hospitalization were 41.8% (95% Confidence Interval [CI]: 26.0, 54.3), and 42.8% (95% CI: 23.8, 57.0), respectively. In younger adults (16–64 years), the unadjusted and adjusted VEs of TIV against influenza-hospitalization were 35.8% (95% CI: 4.5, 56.8) and 33.2% (95% CI: −6.7, 58.2), respectively. In the all adults group, adjusted VE against influenza A/H1N1 was 72.5% (95% CI: 30.5, 89.1), against A/H3N2 was 86.1% (95% CI: 40.1, 96.8), against B/Victoria was 40.5% (95% CI: −28.9, 72.6), and against B/Yamagata was 32.3% (95% CI: −8.3, 57.7). The adjusted estimate of early season VE (from November 1 to March 11) was 54.4% (95% CI: 29.7–70.4), which was higher than late season (from March 11 to May 25) VE estimate (VE: 29.7%, 95% CI: -5.3, 53.1). Conclusions These results suggest that TIV was highly effective against A viruses and moderately effective against B viruses during a mild season characterised by co-circulation of four influenza strains in Canada. Findings underscore the need to provide VE assessment by subtype/lineage as well as the timing of vaccination (early season vs late season) to accurately evaluate vaccine performance and thus guide public health decision-making. Trial registration ClinicalTrials.gov Identifier: NCT01517191. Registration was retrospective and the date of registration was January 17, 2012.Medicine, Faculty ofNon UBCReviewedFacult

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore