199 research outputs found

    Quantum orbits of R-matrix type

    Get PDF
    Given a simple Lie algebra \gggg, we consider the orbits in \gggg^* which are of R-matrix type, i.e., which possess a Poisson pencil generated by the Kirillov-Kostant-Souriau bracket and the so-called R-matrix bracket. We call an algebra quantizing the latter bracket a quantum orbit of R-matrix type. We describe some orbits of this type explicitly and we construct a quantization of the whole Poisson pencil on these orbits in a similar way. The notions of q-deformed Lie brackets, braided coadjoint vector fields and tangent vector fields are discussed as well.Comment: 18 pp., Late

    Quantum Coadjoint Orbits of GL(n) and Generalized Verma Modules

    Full text link

    Quantum symmetric pairs and representations of double affine Hecke algebras of type CCnC^\vee C_n

    Get PDF
    We build representations of the affine and double affine braid groups and Hecke algebras of type CCnC^\vee C_n, based upon the theory of quantum symmetric pairs (U,B)(U,B). In the case U=Uq(glN)U=U_q(gl_N), our constructions provide a quantization of the representations constructed by Etingof, Freund and Ma in arXiv:0801.1530, and also a type BCBC generalization of the results in arXiv:0805.2766.Comment: Final version, to appear in Selecta Mathematic

    A quantum homogeneous space of nilpotent matrices

    Full text link
    A quantum deformation of the adjoint action of the special linear group on the variety of nilpotent matrices is introduced. New non-embedded quantum homogeneous spaces are obtained related to certain maximal coadjoint orbits, and known quantum homogeneous spaces are revisited.Comment: 12 page

    On dynamical adjoint functor

    Full text link
    We give an explicit formula relating the dynamical adjoint functor and dynamical twist over nonalbelian base to the invariant pairing on parabolic Verma modules. As an illustration, we give explicit U(sl(n))U(sl(n))- and U(sl(n))U_\hbar(sl(n))-invariant star product on projective spaces

    Spectral extension of the quantum group cotangent bundle

    Full text link
    The structure of a cotangent bundle is investigated for quantum linear groups GLq(n) and SLq(n). Using a q-version of the Cayley-Hamilton theorem we construct an extension of the algebra of differential operators on SLq(n) (otherwise called the Heisenberg double) by spectral values of the matrix of right invariant vector fields. We consider two applications for the spectral extension. First, we describe the extended Heisenberg double in terms of a new set of generators -- the Weyl partners of the spectral variables. Calculating defining relations in terms of these generators allows us to derive SLq(n) type dynamical R-matrices in a surprisingly simple way. Second, we calculate an evolution operator for the model of q-deformed isotropic top introduced by A.Alekseev and L.Faddeev. The evolution operator is not uniquely defined and we present two possible expressions for it. The first one is a Riemann theta function in the spectral variables. The second one is an almost free motion evolution operator in terms of logarithms of the spectral variables. Relation between the two operators is given by a modular functional equation for Riemann theta function.Comment: 38 pages, no figure
    corecore