44 research outputs found

    Application of microneedles to enhance delivery of micro-particles from gene guns

    Get PDF
    Gene gun assisted micro-particle delivery system is an excellent method for the delivery of DNA into target tissue so as to carry out gene transfection in the target cells. The gene gun is primarily a particle accelerator which accelerates DNA-coated micro-particles to sufficient velocities to breach the target layer enabling the micro-particles to penetrate to a desired depth and target the cells of interest to achieve gene transfer. However, an inevitable problem in this process is the tissue/cell damage due to the impaction of the pressurized gas and micro-particles on the target. The purpose of this research is developing a new conceptual system which improves the penetration depth of micro-particles at less imposed pressure and particle injection velocity. This is achieved by applying a microneedle array and ground slide in the gene gun system, thus a study involving microneedle assisted micro-particle delivery is conducted in this work. Microneedle array is used to create holes in the target which allows a number of micro-particles to penetrate through the skin which enhances the penetration depth inside target. The ground slide is used to load a pellet of the micro-particles and prevent the pressurized gas to avoid the impaction on the target. The operation principle is that the pellet is attached to ground slide which is accelerated to a sufficient velocity by the pressurized gas. The pellet is released from the ground slide which separates into individual micro-particles by a mesh and penetrates to a desired depth inside the target. An experimental rig to study various aspects of microneedle assisted micro-particle delivery is designed in this PhD research. The passage percentage of the micro-particles and size of the separated micro-particles are analysed in relation to the operating pressure, mesh pore size and Polyvinylpyrrolidone (PVP) concentration to verify the applicability of this system for the micro-particle delivery. The results have shown that the passage percentage increases from an increase in the mesh pore size and operating pressure and a decrease in PVP concentration. A mesh pore size of 178 μm and pellet PVP concentration of 40 mg/ml were used for the bulk of the experiments in this study as these seem to provide higher passage percentage and the narrow size distribution of the separated micro-particles. In addition, the velocity of the ground slide is detected by the photoelectric sensor and shown that it increases from an increase in operating pressure and reaches 148 m/s at 6 bar pressure, A further analysis in the penetration depths of the micro-particles to determine whether they achieve enhanced penetration depths inside the target after using microneedles is carried out. A skin mimicked agarose gel is obtained from comparing the viscoelastic properties of various concentration of agarose gel in comparison with the porcine skin, which is assumed to mimic the human skin. These experiments are used to relate the micro-particle penetration depth with the operating pressure, microneedle length and particle size. In addition, a theoretical model is developed based on the experimental data to simulate the microneedle assisted micro-particle delivery which provide further understanding of the microneedle assisted micro-particle delivery. The developed model was used to analyse the penetration depth of micro-particles in relation to the operation pressure, target properties, microneedle length and particle size and density. The modelling results were compared with the experimental results to verify the feasibility of the microneedle assisted micro-particle delivery for micro-particles delivery. As expected, both experimental and theoretical results show that the micro-particles achieve an enhanced penetration depth inside target. The maximum penetration depth of micro-particles is increased from an increase in operating pressure, microneedle length, particle size and density

    Microneedle assisted micro-particle delivery: experiments using a skin mimicking agarose gel

    Get PDF
    Microneedle assisted micro-particle delivery: experiments using a skin mimicking agarose ge

    Modelling microneedle assisted micro-particle delivery

    Get PDF
    Modelling microneedle assisted micro-particle deliver

    Microneedle assisted micro-particle delivery by gene guns: mathematical model formulation and experimental verification

    Get PDF
    Gene gun is a micro-particles delivery system which accelerates DNA loaded micro-particles to a high speed so as to enable penetration of the micro-particles into deeper tissues to achieve gene transfection. Previously, microneedle (MN) assisted micro-particles delivery has been shown to achieve the purpose of enhanced penetration depth of micro-particles based on a set of laboratory experiments. In order to further understand the penetration process of micro-particles, a mathematical model for MN assisted micro-particles delivery is developed. The model mimics the acceleration, separation and deceleration stages of the operation of a gene gun (or experimental rig) aimed at delivering the micro-particles into tissues. The developed model is used to simulate the particle velocity and the trajectories of micro-particles while they penetrate into the target. The model mimics the deceleration stage to predict the linear trajectories of the micro-particles which randomly select the initial positions in the deceleration stage and enter into the target. The penetration depths of the micro-particles are analyzed in relation to a number of parameters, e.g., operating pressure, particle size, and MNs length. Results are validated with experimental results obtained from the previous work. The results also show that the particle penetration depth is increased from an increase of operating pressure, particle size and MN length. The presence of the pierced holes causes a surge in penetration distance. © 2014 Elsevier Ltd. All rights reserved

    Potential of microneedle-assisted micro-particle delivery by gene guns: a review

    Get PDF
    Abstact Context: Gene guns have been used to deliver deoxyribonucleic acid (DNA) loaded micro-particle and breach the muscle tissue to target cells of interest to achieve gene transfection. Objective: This article aims to discuss the potential of microneedle (MN) assisted micro-particle delivery from gene guns, with a view to reducing tissue damage. Methods: Using a range of sources, the main gene guns for micro-particle delivery are reviewed along with the primary features of their technology, e.g. their design configurations, the material selection of the micro-particle, the driving gas type and pressure. Depending on the gene gun system, the achieved penetration depths in the skin are discussed as a function of the gas pressure, the type of the gene gun system and particle size, velocity and density. The concept of MN-assisted micro-particles delivery which consists of three stages (namely, acceleration, separation and decoration stage) is discussed. In this method, solid MNs are inserted into the skin to penetrate the epidermis/dermis layer and create holes for particle injection. Several designs of MN array are discussed and the insertion mechanism is explored, as it determines the feasibility of the MN-based system for particle transfer. Results: This review suggests that one of the problems of gene guns is that they need high operating pressures, which may result in direct or indirect tissue/cells damage. MNs seem to be a promising method which if combined with the gene guns may reduce the operating pressures for these devices and reduce tissue/cell damages. Conclusions: There is sufficient potential for MN-assisted particle develivery systems

    Microneedle-assisted microparticle delivery by gene guns: experiments and modeling on the effects of particle characteristics.

    Get PDF
    Abstract Microneedles (MNs) have been shown to enhance the penetration depths of microparticles delivered by gene gun. This study aims to investigate the penetration of model microparticle materials, namely, tungsten (<1 μm diameter) and stainless steel (18 and 30 μm diameters) into a skin mimicking agarose gel to determine the effects of particle characteristics (mainly particle size). A number of experiments have been processed to analyze the passage percentage and the penetration depth of these microparticles in relation to the operating pressures and MN lengths. A comparison between the stainless steel and tungsten microparticles has been discussed, e.g. passage percentage, penetration depth. The passage percentage of tungsten microparticles is found to be less than the stainless steel. It is worth mentioning that the tungsten microparticles present unfavourable results which show that they cannot penetrate into the skin mimicking agarose gel without the help of MN due to insufficient momentum due to the smaller particle size. This condition does not occur for stainless steel microparticles. In order to further understand the penetration of the microparticles, a mathematical model has been built based on the experimental set up. The penetration depth of the microparticles is analyzed in relation to the size, operating pressure and MN length for conditions that cannot be obtained in the experiments. In addition, the penetration depth difference between stainless steel and tungsten microparticles is studied using the developed model to further understand the effect of an increased particle density and size on the penetration depth

    Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel

    Get PDF
    A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively

    An experimental study of microneedle-assisted microparticle delivery

    Get PDF
    A set of well-defined experiments has been carried out to explore whether microneedles (MNs) can enhance the penetration depths of microparticles moving at high velocity such as those expected in gene guns for delivery of gene-loaded microparticles into target tissues. These experiments are based on applying solid MNs that are used to reduce the effect of mechanical barrier function of the target so as to allow delivery of microparticles at less imposed pressure as compared with most typical gene guns. Further, a low-cost material, namely, biomedical-grade stainless steel microparticle with size ranging between 1 and 20 μm, has been used in this study. The microparticles are compressed and bound in the form of a cylindrical pellet and mounted on a ground slide, which are then accelerated together by compressed air through a barrel. When the ground slide reaches the end of the barrel, the pellet is separated from the ground slide and is broken down into particle form by a mesh that is placed at the end of the barrel. Subsequently, these particles penetrate into the target. This paper investigates the implications of velocity of the pellet along with various other important factors that affect the particle delivery into the target. Our results suggest that the particle passage increases with an increase in pressure, mesh pore size, and decreases with increase in polyvinylpyrrolidone concentration. Most importantly, it is shown that MNs increase the penetration depths of the particles

    Multilayer Magnetic Composite Particles with Functional Polymer Brushes as Stabilizers for Gold Nanocolloids and Their Recyclable Catalysis

    No full text
    The functional poly­(2-dimethylaminoethyl methacrylate) (PDMAEMA) brush was grafted onto the alkyl-bromide-modified magnetite/silica/poly­(<i>N</i>,<i>N</i>′-methylenebisacrylamide-<i>co</i>-2-hydroxyethylmethacrylate) (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@PHEMA) trilayer microspheres via the surface-induced atom transfer radical polymerization. Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@PHEMA trilayer microspheres with surface alkyl bromide groups were prepared by the combination of sol–gel process for the synthesis of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> core–shell inorganic component and distillation–precipitation polymerization for the formation of PHEMA shell together with the subsequent esterification of the surface hydroxyl group and 2-bromoisobutyryl bromide. Furthermore, the gold nanoparticles were facilely loaded into the functional PDMAEMA brushes through the in situ reduction due to their strong coordinate interaction. These PDMAEMA brush-stabilized gold nanocolloids were used as a catalyst with the reduction of 4-nitophenol to 4-aminophenol as a model reaction, which revealed a highly catalytic efficiency and good reusable property

    DNA Methylation Patterns Can Estimate Nonequivalent Outcomes of Breast Cancer with the Same Receptor Subtypes

    No full text
    <div><p>Breast cancer has various molecular subtypes and displays high heterogeneity. Aberrant DNA methylation is involved in tumor origin, development and progression. Moreover, distinct DNA methylation patterns are associated with specific breast cancer subtypes. We explored DNA methylation patterns in association with gene expression to assess their impact on the prognosis of breast cancer based on Infinium 450K arrays (training set) from The Cancer Genome Atlas (TCGA). The DNA methylation patterns of 12 featured genes that had a high correlation with gene expression were identified through univariate and multivariable Cox proportional hazards models and used to define the methylation risk score (MRS). An improved ability to distinguish the power of the DNA methylation pattern from the 12 featured genes (p = 0.00103) was observed compared with the average methylation levels (p = 0.956) or gene expression (p = 0.909). Furthermore, MRS provided a good prognostic value for breast cancers even when the patients had the same receptor status. We found that ER-, PR- or Her2- samples with high-MRS had the worst 5-year survival rate and overall survival time. An independent test set including 28 patients with death as an outcome was used to test the validity of the MRS of the 12 featured genes; this analysis obtained a prognostic value equivalent to the training set. The predict power was validated through two independent datasets from the GEO database. The DNA methylation pattern is a powerful predictor of breast cancer survival, and can predict outcomes of the same breast cancer molecular subtypes.</p></div
    corecore