22 research outputs found

    Pharmacokinetic study of isoquercitrin in rat plasma after intravenous administration at three different doses

    Get PDF
    O objetivo deste estudo é desenvolver um método simples e específico de HPLC usando vitexina como padrão interno para investigar a farmacocinética do isoquercitrina (ISOQ) após três doses diferentes administradas por via intravenosa a ratos. Os parâmetros farmacocinéticos foram calculados pelas abordagens compartimental e não compartimental. Os resultados mostraram que ISOQ se encaixa no modelo de três compartimentos. Os valores de AUC aumentaram proporcionalmente na faixa de 5-10 mg·kg-1. Além disso, a meia-vida, b meia-vida, ªCL, MRT0-t and MRT0→∞ de ISOQ em ratos mostraram diferenças significativas entre 20 mg·kg-1 e outras doses, o que significa que ISOQ apresenta farmacocinética dose-dependente no intervalo de 5-10 mg·kg-1 e farmacocinética não linear em doses mais elevadas.The aim of this study is to develop a simple and specific HPLC method using vitexin as the internal standard to investigate the pharmacokinetics of isoquercitrin (ISOQ) after three different doses administrated intravenously to rats. The pharmacokinetic parameters were calculated by both compartmental and non-compartmental approaches. The results showed that ISOQ fitted a three-compartment open model. The values of AUC increased proportionally within the range of 5-10 mg·kg-1. Moreover, a half-life, b half-life, ªCL, MRT0-t and MRT0→∞ of ISOQ in rats showed significant differences between 20 mg·kg-1 and other doses, indicating that ISOQ presented dose-dependent pharmacokinetics in the range of 5-10 mg·kg-1 and non-linear pharmacokinetics at higher doses

    Emission Control of Toluene in Iron Ore Sintering Using Catalytic Oxidation Technology: A Critical Review

    No full text
    Iron ore sintering flue gas containing large amounts of volatile organic compounds (VOCs) can form secondary photochemical smog and organic aerosols, thus posing a serious threat to human health and the ecological environment. Catalytic combustion technology has been considered as one of the most prospective strategies for VOC elimination. This paper focuses on a review of studies on catalytic removal of typical VOCs (toluene) on transition metal oxide catalysts in recent years, with advances in single metal oxides, multi-oxide composites, and supported metal oxide catalysts. Firstly, the catalytic activities of a series of catalysts for toluene degradation are evaluated and compared, leading to an analysis of the key catalytic indicators that significantly affect the efficiency of toluene degradation. Secondly, the reaction pathway and mechanism of toluene degradation are systematically introduced. Considering the site space and investment cost, the conversion of VOC pollutants to harmless substances using existing selective catalytic reduction (SCR) systems has been studied with considerable effort. Based on the current development of simultaneous multi-pollutant elimination technology, the interaction mechanism between the NH3-SCR reaction and toluene catalytic oxidation on the surface is discussed in detail. Finally, views on the key scientific issues and the challenges faced, as well as an outlook for the future, are presented. This overview is expected to provide a guide for the design and industrial application of NO/VOC simultaneous removal catalysts
    corecore