107 research outputs found

    Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1

    Get PDF
    Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP–α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 is required and sufficient for TSP-induced synaptogenesis in vitro and spine formation in vivo, but an α2δ-1 mutant linked to autism cannot rescue these synaptogenesis defects. Finally, we reveal that TSP–α2δ-1 interactions control synaptogenesis postsynaptically via Rac1, suggesting potential molecular mechanisms that underlie both synaptic development and pathology

    Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone metastases are frequent complications of breast cancer. Recent literature implicates multiple chemokines in the formation of bone metastases in breast cancer. However, the molecular mechanism of metastatic bone disease in breast cancer remains unknown. We have recently made the novel observation of the BST2 protein expression in human breast cancer cell lines. The purpose of our present study is to investigate the expression and the role of BST2 in bone metastatic breast cancer.</p> <p>Methods</p> <p>cDNA microarray analysis was used to compare the BST2 gene expression between a metastatic to bone human breast cancer cell line (MDA-231BO) and a primary human breast cancer cell line (MDA-231). The BST2 expression in one bone metastatic breast cancer and seven non-bone metastatic breast cancer cell lines were also determined using real-time RT-PCR and Western blot assays. We then employed tissue array to further study the BST2 expression in human breast cancer using array slides containing 20 independent breast cancer tumors that formed metastatic bone lesions, 30 non-metastasis-forming breast cancer tumors, and 8 normal breast tissues. In order to test the feasibility of utilizing BST2 as a serum marker for the presence of bone metastasis in breast cancer, we had measured the BST2 expression levels in human serums by using ELISA on 43 breast cancer patients with bone metastasis, 43 breast cancer patients without bone metastasis, and 14 normal healthy controls. The relationship between cell migration and proliferation and BST2 expression was also studied in a human breast recombinant model system using migration and FACS analysis.</p> <p>Results</p> <p>The microarray demonstrated over expression of the BST2 gene in the bone metastatic breast cancer cell line (MDA-231BO) compared to the primary human breast cancer cell line (MDA-231). The expression of the BST2 gene was significantly increased in the bone metastatic breast cancer cell lines and tumor tissues compared to non-bone metastatic breast cancer cell lines and tumor tissues by real time RT-PCR, Western blot and TMA. Furthermore, serum levels of BST2 measured by ELISA were also significantly higher among patients with breast cancer metastatic to bone compared to breast cancer patients without metastatic to bone (P < .0001). Most importantly, the breast cancer cell line that transfected with BST2 demonstrated increased BST2 expressions, which was associated with increased cancer cell migration and cell proliferation.</p> <p>Conclusion</p> <p>These results provide novel data indicating the BST2 protein expression is associated with the formation of bone metastases in human breast cancer. We believe that BST2 may be a potential biomarker in breast cancer with bone metastasis.</p

    Ambient Bistable Single Dipole Switching in a Molecular Monolayer

    Get PDF
    Reported here is a molecular dipole that self‐assembles into highly ordered patterns at the liquid‐solid interface, and it can be switched at room temperature between a bright and a dark state at the single‐molecule level. Using a scanning tunneling microscope (STM) under suitable bias conditions, binary information can be written at a density of up to 41 Tb cm−2 (256 Tb/in2). The written information is stable during reading at room temperature, but it can also be erased at will, instantly, by proper choice of tunneling conditions. DFT calculations indicate that the contrast and switching mechanism originate from the stacking sequence of the molecular dipole, which is reoriented by the electric field between the tip and substrate

    A Chitinase from Aeromonas veronii CD3 with the Potential to Control Myxozoan Disease

    Get PDF
    Background: The class Myxosporea encompasses about 2,400 species, most of which are parasites of fish and cause serious damage in aquaculture. Due to the concerns about food safety issues and limited knowledge of Myxozoa life cycle and fish immune system, no chemicals, antibiotics or immune modulators are available to control myxozoa infection. Therefore, little can be done once Myxozoa establishment has occurred. Methodology/Principal Findings: In this paper we isolated Aeromonas veronii CD3 with significant myxospore shell valvedegrading ability from pond sediment. A 3,057-bp full-length chitinase gene was consequently cloned, and the corresponding mature, recombinant chitinase (ChiCD3) produced by Escherichia coli had substantial chitinase activity. The deduced sequence of ChiCD3 contained one catalytic domain, two chitin-binding domains, and one putative signal peptide. ChiCD3 had an optimal activity at 50uC and pH 6.0, and retained more than 50 % of its optimal activity under warm water aquaculture conditions (,30uC and pH,7.0). After incubation with ChiCD3, 38.064.8 % of the myxospores had damaged shell valves, whereas myxospores incubated with commercially available chitinases remained intact. Conclusion/Significance: This study reveals a new strategy to control myxozoan disease. ChiCD3 that has capacity to damage the shell valve of myxospores can be supplemented into fish feed and used to control Myxozoa-induced disease

    Risk factors for inadequate and excessive gestational weight gain in 25 low- and middle-income countries: An individual-level participant meta-analysis

    Get PDF
    Background Many women experience suboptimal gestational weight gain (GWG) in low- and middle-income countries (LMICs), but our understanding of risk factors associated with GWG in these settings is limited. We investigated the relationships between demographic, anthropometric, lifestyle, and clinical factors and GWG in prospectively collected data from LMICs. Methods and findings We conducted an individual participant-level meta-analysis of risk factors for GWG outcomes among 138,286 pregnant women with singleton pregnancies in 55 studies (27 randomized controlled trials and 28 prospective cohorts from 25 LMICs). Data sources were identified through PubMed, Embase, and Web of Science searches for articles published from January 2000 to March 2019. Titles and abstracts of articles identified in all databases were independently screened by 2 team members according to the following eligibility criteria: following inclusion criteria: (1) GWG data collection took place in an LMIC; (2) the study was a prospective cohort or randomized trial; (3) study participants were pregnant; and (4) the study was not conducted exclusively among human immunodeficiency virus (HIV)-infected women or women with other health conditions that could limit the generalizability of the results. The Institute of Medicine (IOM) body mass index (BMI)-specific guidelines were used to determine the adequacy of GWG, which we calculated as the ratio of the total observed weight gain over the mean recommended weight gain. Study outcomes included severely inadequate GWG (percent adequacy of GWG &lt;70), inadequate GWG (percent adequacy of GWG &lt;90, inclusive of severely inadequate), and excessive GWG (percent adequacy of GWG &gt;125). Multivariable estimates from each study were pooled using fixed-effects meta-analysis. Study-specific regression models for each risk factor included all other demographic risk factors measured in a particular study as potential confounders, as well as BMI, maternal height, pre-pregnancy smoking, and chronic hypertension. Risk factors occurring during pregnancy were further adjusted for receipt of study intervention (if any) and 3-month calendar period. The INTERGROWTH-21st standard was used to define high and low GWG among normal weight women in a sensitivity analysis. The prevalence of inadequate GWG was 54%, while the prevalence of excessive weight gain was 22%. In multivariable models, factors that were associated with a higher risk of inadequate GWG included short maternal stature (&lt;145 cm), tobacco smoking, and HIV infection. A mid-upper arm circumference (MUAC) of ≥28.1 cm was associated with the largest increase in risk for excessive GWG (risk ratio (RR) 3.02, 95% confidence interval (CI) [2.86, 3.19]). The estimated pooled difference in absolute risk between those with MUAC of ≥28.1 cm compared to those with a MUAC of 24 to 28.09 cm was 5.8% (95% CI 3.1% to 8.4%). Higher levels of education and age &lt;20 years were also associated with an increased risk of excessive GWG. Results using the INTERGROWTH-21st standard among normal weight women were similar but attenuated compared to the results using the IOM guidelines among normal weight women. Limitations of the study’s methodology include differences in the availability of risk factors and potential confounders measured in each individual dataset; not all risk factors or potential confounders of interest were available across datasets and data on potential confounders collected across studies. Conclusions Inadequate GWG is a significant public health concern in LMICs. We identified diverse nutritional, behavioral, and clinical risk factors for inadequate GWG, highlighting the need for integrated approaches to optimizing GWG in LMICs. The prevalence of excessive GWG suggests that attention to the emerging burden of excessive GWG in LMICs is also warranted. </jats:sec

    Sustained axon regeneration induced by co-deletion of PTEN and SOCS3

    Get PDF
    A formidable challenge in neural repair in the adult central nervous system (CNS) is the long distances that regenerating axons often need to travel in order to reconnect with their targets. Thus, a sustained capacity for axon regeneration is critical for achieving functional restoration. Although deletion of either phosphatase and tensin homologue (PTEN), a negative regulator of mammalian target of rapamycin (mTOR), or suppressor of cytokine signalling 3 (SOCS3), a negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, in adult retinal ganglion cells (RGCs) individually promoted significant optic nerve regeneration, such regrowth tapered off around 2 weeks after the crush injury. Here we show that, remarkably, simultaneous deletion of both PTEN and SOCS3 enables robust and sustained axon regeneration. We further show that PTEN and SOCS3 regulate two independent pathways that act synergistically to promote enhanced axon regeneration. Gene expression analyses suggest that double deletion not only results in the induction of many growth-related genes, but also allows RGCs to maintain the expression of a repertoire of genes at the physiological level after injury. Our results reveal concurrent activation of mTOR and STAT3 pathways as key for sustaining long-distance axon regeneration in adult CNS, a crucial step towards functional recovery

    Suboptimal gestational weight gain and neonatal outcomes in low and middle income countries: individual participant data meta-analysis

    Get PDF
    Objective To estimate the associations between gestational weight gain (GWG) during pregnancy and neonatal outcomes in low and middle income countries. Design Individual participant data meta-analysis. Setting Prospective pregnancy studies from 24 low and middle income countries. Main outcome measures Nine neonatal outcomes related to timing (preterm birth) and anthropometry (weight, length, and head circumference) at birth, stillbirths, and neonatal death. Analysis methods A systematic search was conducted in PubMed, Embase, and Web of Science which identified 53 prospective pregnancy studies published after the year 2000 with data on GWG, timing and anthropometry at birth, and neonatal mortality. GWG adequacy was defined as the ratio of the observed maternal weight gain over the recommended weight gain based on the Institute of Medicine body mass index specific guidelines, which are derived from data in high income settings, and the INTERGROWTH-21st GWG standards. Study specific estimates, adjusted for confounders, were generated and then pooled using random effects meta-analysis models. Maternal age and body mass index before pregnancy were examined as potential modifiers of the associations between GWG adequacy and neonatal outcomes. Results Overall, 55% of participants had severely inadequate (<70%) or moderately inadequate (70% to <90%) GWG, 22% had adequate GWG (90-125%), and 23% had excessive GWG (≥125%). Severely inadequate GWG was associated with a higher risk of low birthweight (adjusted relative risk 1.62, 95% confidence interval 1.51 to 1.72; 48 studies, 93 337 participants; τ2=0.006), small for gestational age (1.44, 1.36 to 1.54; 51 studies, 93 191 participants; τ2=0.016), short for gestational age (1.47, 1.29 to 1.69; 40 studies, 83 827 participants; τ2=0.074), and microcephaly (1.57, 1.31 to 1.88; 31 studies, 80 046 participants; τ2=0.145) compared with adequate GWG. Excessive GWG was associated with a higher risk of preterm birth (1.22, 1.13 to 1.31; 48 studies, 103 762 participants; τ2=0.008), large for gestational age (1.44, 1.33 to 1.57; 47 studies, 90 044 participants; τ2=0.009), and macrosomia (1.52, 1.33 to 1.73; 29 studies, 68 138 participants; τ2=0) compared with adequate GWG. The direction and magnitude of the associations between GWG adequacy and several neonatal outcom

    The common rs9939609 variant of the fat mass and obesity-associated gene is associated with obesity risk in children and adolescents of Beijing, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous genome-wide association studies for type 2 diabetes susceptibility genes have confirmed that a common variant, rs9939609, in the fat mass and obesity associated (<it>FTO</it>) gene region is associated with body mass index (BMI) in European children and adults. A significant association of the same risk allele has been described in Asian adult populations, but the results are conflicting. In addition, no replication studies have been conducted in children and adolescents of Asian ancestry.</p> <p>Methods</p> <p>A population-based survey was carried out among 3503 children and adolescents (6-18 years of age) in Beijing, China, including 1229 obese and 2274 non-obese subjects. We investigated the association of rs9939609 with BMI and the risk of obesity. In addition, we tested the association of rs9939609 with weight, height, waist circumference, waist-to-height ratio, fat mass percentage, birth weight, blood pressure and related metabolic traits.</p> <p>Results</p> <p>We found significant associations of rs9939609 variant with weight, BMI, BMI standard deviation score (BMI-SDS), waist circumference, waist-to-height ratio, and fat mass percentage in children and adolescents (<it>p </it>for trend = 3.29 × 10<sup>-5</sup>, 1.39 × 10<sup>-6</sup>, 3.76 × 10<sup>-6</sup>, 2.26 × 10<sup>-5</sup>, 1.94 × 10<sup>-5</sup>, and 9.75 × 10<sup>-5</sup>, respectively). No significant associations were detected with height, birth weight, systolic and diastolic blood pressure and related metabolic traits such as total cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol and fasting plasma glucose (all <it>p </it>> 0.05). Each additional copy of the rs9939609 A allele was associated with a BMI increase of 0.79 [95% Confidence interval (CI) 0.47 to 1.10] kg/m<sup>2</sup>, equivalent to 0.25 (95%CI 0.14 to 0.35) BMI-SDS units. This rs9939609 variant is significantly associated with the risk of obesity under an additive model [Odds ratio (OR) = 1.29, 95% CI 1.11 to 1.50] after adjusting for age and gender. Moreover, an interaction between the <it>FTO</it> rs9939609 genotype and physical activity (<it>p </it>< 0.001) was detected on BMI levels, the effect of rs9939609-A allele on BMI being (0.95 ± 0.10), (0.77 ± 0.08) and (0.67 ± 0.05) kg/m<sup>2</sup>, for subjects who performed low, moderate and severe intensity physical activity.</p> <p>Conclusion</p> <p>The <it>FTO </it>rs9939609 variant is strongly associated with BMI and the risk of obesity in a population of children and adolescents in Beijing, China.</p

    Fluorescent Labeling of Newborn Dentate Granule Cells in GAD67-GFP Transgenic Mice: A Genetic Tool for the Study of Adult Neurogenesis

    Get PDF
    Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells
    corecore