295 research outputs found

    BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous Driving

    Full text link
    The ability to accurately predict the trajectory of surrounding vehicles is a critical hurdle to overcome on the journey to fully autonomous vehicles. To address this challenge, we pioneer a novel behavior-aware trajectory prediction model (BAT) that incorporates insights and findings from traffic psychology, human behavior, and decision-making. Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules that perceive and understand the underlying interactions and account for uncertainty and variability in prediction, enabling higher-level learning and flexibility without rigid categorization of driving behavior. Importantly, this approach eliminates the need for manual labeling in the training process and addresses the challenges of non-continuous behavior labeling and the selection of appropriate time windows. We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets, showcasing its superiority over prevailing state-of-the-art (SOTA) benchmarks in terms of prediction accuracy and efficiency. Remarkably, even when trained on reduced portions of the training data (25%), our model outperforms most of the baselines, demonstrating its robustness and efficiency in predicting vehicle trajectories, and the potential to reduce the amount of data required to train autonomous vehicles, especially in corner cases. In conclusion, the behavior-aware model represents a significant advancement in the development of autonomous vehicles capable of predicting trajectories with the same level of proficiency as human drivers. The project page is available at https://github.com/Petrichor625/BATraj-Behavior-aware-Model

    Low-frequency weak electric field measurement based on Rydberg atoms using cavity-enhanced three photon system

    Get PDF
    Introduction: Rydberg atoms are ideal for measuring electric fields due to their unique physical properties. However, low-frequency electric fields below MHz can be challenging due to the accumulation of ionized free electrons on the atomic vapor cell’s surface, acting as a shield.Method: This paper proposes a Cavity-enhanced three-photon system (CETPS) measurement scheme, which uses a long-wavelength laser to excite the Rydberg state, reducing atomic ionization and enhancing detection spectrum resolution. A theoretical model is proposed to explain the quantum coherence effect of the light field, measured electric field, and the atomic system.Result: The results show that the proposed scheme significantly increases the electromagnetically induced transparency (EIT) spectral peak and narrows the spectral width, resulting in the maximum slope increasing by more than an order of magnitude.Discussion: The paper also discusses the impact of the Rabi frequency of the two laser fields and the coupling coefficient of the optical cavity on the transmission spectrum amplitude and linewidth, along with the optimal configuration of these parameters in the CEPTS scheme

    Genetic Variation of SARS Coronavirus in Beijing Hospital

    Get PDF
    To characterize genetic variation of severe acute respiratory syndrome–associated coronavirus (SARS-CoV) transmitted in the Beijing area during the epidemic outbreak of 2003, we sequenced 29 full-length S genes of SARS-CoV from 20 hospitalized SARS patients on our unit, the Beijing 302 Hospital. Viral RNA templates for the S-gene amplification were directly extracted from raw clinical samples, including plasma, throat swab, sputum, and stool, during the course of the epidemic in the Beijing area. We used a TA-cloning assay with direct analysis of nested reverse transcription–polymerase chain reaction products in sequence. One hundred thirteen sequence variations with nine recurrent variant sites were identified in analyzed S-gene sequences compared with the BJ01 strain of SARS-CoV. Among them, eight variant sites were, we think, the first documented. Our findings demonstrate the coexistence of S-gene sequences with and without substitutions (referred to BJ01) in samples analyzed from some patients

    Dynamic Changes in the Nigrostriatal Pathway in the MPTP Mouse Model of Parkinson’s Disease

    Get PDF
    The characteristic brain pathology and motor and nonmotor symptoms of Parkinson’s disease (PD) are well established. However, the details regarding the causes of the disease and its course are much less clear. Animal models have significantly enriched our current understanding of the progression of this disease. Among various neurotoxin-based models of PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model is the most commonly studied model. Here, we provide an overview of the dynamic changes in the nigrostriatal pathway in the MPTP mouse model of PD. Pathophysiological events, such as reductions in the striatal dopamine (DA) concentrations and levels of the tyrosine hydroxylase (TH) protein, depletion of TH-positive nerve fibers, a decrease in the number of TH-positive neurons in the substantia nigra pars compacta (SNpc), and glial activation, are addressed. This article will assist with the development of interventions or therapeutic strategies for PD

    Clinical and Immunopathological Features of Moyamoya Disease

    Get PDF
    Background: Moyamoya disease (MMD) is a cerebrovascular disease characterized by progressive stenosis or occlusion of the terminal portion of internal carotid arteries and the formation of a vascular network at the base of the brain. The pathogenesis of MMD is still unclear. Methodology/Principal Findings: We retrospectively analyzed clinical data for 65 consecutive patients with MMD in our institutions and evaluated the histopathological and immunohistochemical findings of intracranial vessels from 3 patients. The onset age distribution was found to have 1 peak at 40–49 year-old age group, no significant difference was observed in the female-to-male ratio (F/M = 1.2). Intracranial hemorrhage was the predominant disease type (75%). Positive family history was observed in 4.6 % of patients. Histopathological findings were a narrowed lumen due to intimal fibrous thickening without significant inflammatory cell infiltration, and the internal elastic lamina was markedly tortuous and stratified. All 3 autopsy cases showed vacuolar degeneration in the cerebrovascular smooth muscle cells. Immunohistochemical study showed the migration of smooth muscle cells in the thickened intima, and aberrant expression of IgG and S100A4 protein in vascular smooth muscle cells. The Complement C3 immunoreactivity was negative. Conclusion/Significance: This study indicated that aberrant expression of IgG and S100A4 protein in intracranial vascular wall of MMD patients, which suggested that immune-related factors may be involved in the functional and morphologica

    Mimotopes selected with neutralizing antibodies against multiple subtypes of influenza A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mimotopes of viruses are considered as the good targets for vaccine design. We prepared mimotopes against multiple subtypes of influenza A and evaluate their immune responses in flu virus challenged Balb/c mice.</p> <p>Methods</p> <p>The mimotopes of influenza A including pandemic H1N1, H3N2, H2N2 and H1N1 swine-origin influenza virus were screened by peptide phage display libraries, respectively. These mimotopes were engineered in one protein as multi- epitopes in Escherichia coli (E. coli) and purified. Balb/c mice were immunized using the multi-mimotopes protein and specific antibody responses were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). The lung inflammation level was evaluated by hematoxylin and eosin (HE).</p> <p>Results</p> <p>Linear heptopeptide and dodecapeptide mimotopes were obtained for these influenza virus. The recombinant multi-mimotopes protein was a 73 kDa fusion protein. Comparing immunized infected groups with unimmunized infected subsets, significant differences were observed in the body weight loss and survival rate. The antiserum contained higher HI Ab titer against H1N1 virus and the lung inflammation level were significantly decreased in immunized infected groups.</p> <p>Conclusions</p> <p>Phage-displayed mimotopes against multiple subtypes of influenza A were accessible to the mouse immune system and triggered a humoral response to above virus.</p

    Performance study and dynamic optimization design for thread pool systems

    No full text
    Thread pools have been widely used by many multithreaded applications; however, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.</p
    • …
    corecore