945 research outputs found

    Auditor-Client Disagreements, Auditor Resignations, And Audit Fees Charged By Successor Auditors

    Get PDF
    This paper investigates the effects of auditor-client disagreement disclosure on auditor resignations and audit fee charged by successor auditors. Using a matched sample of auditor changes over the period 2003-2016, we find that auditor resignations are more often accompanied by auditor-client disagreements. We also find that Big 4 auditors are more likely to resign from their engagements when they disagree with their clients. Further, we document that successor auditors charge higher audit fees for firms that have disagreements with their predecessor auditors. Relative to non-Big 4 auditors, Big 4 successor auditors charge even higher audit fee for disagreement firms

    Improved critical current densities in MgB2 tapes with ZrB2 doping

    Get PDF
    MgB2/Fe tapes with 2.5-15 at.% ZrB2 additions were prepared through the in situ powder-in-tube method. Compared to the pure tape, a significant improvement in the in-field critical current density Jc was observed, most notably for 10 at.% doping, while the critical temperature decreased slightly. At 4.2 K, the transport Jc for the 10 at.% doped sample increased by more than an order of magnitude than the undoped one in magnetic fields above 9 T. Nanoscale segregates or defects caused by the ZrB2 additions which act as effective flux pinning centers are proposed to be the main reason for the improved Jc field performance.Comment: 14 pages, 6 figure

    RESEARCH ON THE FLUID-INDUCED EXCITATION CHARACTERISTICS OF THE CENTRIFUGAL PUMP CONSIDERING THE COMPOUND WHIRL EFFECT

    Get PDF
    In order to study the correlation mechanism between the flow characteristics and the fluid-induced force under the compound whirl motion in the centrifugal pump, the RNG k-ε model is selected in this paper to simulate a low specific speed centrifugal pump with impeller eccentricity based on the N-S equation. The changes of fluid-induced force with impeller eccentricity and the unsteady flow characteristics of the internal flow field of centrifugal pump under different flow conditions and rotation speeds are investigated, and the relationship between the fluid-induced force of the impeller and the internal flow field characteristics is discussed. The results show that the trend of fluid-induced force and the pressure coefficient is similar. When the rotation speed changes and when the flow is similar, the pressure coefficient under different rotation speeds almost coincides. With the increase of impeller speed and impeller eccentricity, the dynamic and static interferences between the impeller and the volute tongue are more significant, the uneven distribution of the pressure around the impeller makes the internal flow of centrifugal pump more disordered and increases the fluid-induced force near the volute tongue. The research results can provide important reference value for accurately grasping the internal flow excitation principle of the centrifugal pump

    Indoor simultaneous localization and mapping based on fringe projection profilometry

    Full text link
    Simultaneous Localization and Mapping (SLAM) plays an important role in outdoor and indoor applications ranging from autonomous driving to indoor robotics. Outdoor SLAM has been widely used with the assistance of LiDAR or GPS. For indoor applications, the LiDAR technique does not satisfy the accuracy requirement and the GPS signals will be lost. An accurate and efficient scene sensing technique is required for indoor SLAM. As the most promising 3D sensing technique, the opportunities for indoor SLAM with fringe projection profilometry (FPP) systems are obvious, but methods to date have not fully leveraged the accuracy and speed of sensing that such systems offer. In this paper, we propose a novel FPP-based indoor SLAM method based on the coordinate transformation relationship of FPP, where the 2D-to-3D descriptor-assisted is used for mapping and localization. The correspondences generated by matching descriptors are used for fast and accurate mapping, and the transform estimation between the 2D and 3D descriptors is used to localize the sensor. The provided experimental results demonstrate that the proposed indoor SLAM can achieve the localization and mapping accuracy around one millimeter

    Trustworthy Representation Learning Across Domains

    Full text link
    As AI systems have obtained significant performance to be deployed widely in our daily live and human society, people both enjoy the benefits brought by these technologies and suffer many social issues induced by these systems. To make AI systems good enough and trustworthy, plenty of researches have been done to build guidelines for trustworthy AI systems. Machine learning is one of the most important parts for AI systems and representation learning is the fundamental technology in machine learning. How to make the representation learning trustworthy in real-world application, e.g., cross domain scenarios, is very valuable and necessary for both machine learning and AI system fields. Inspired by the concepts in trustworthy AI, we proposed the first trustworthy representation learning across domains framework which includes four concepts, i.e, robustness, privacy, fairness, and explainability, to give a comprehensive literature review on this research direction. Specifically, we first introduce the details of the proposed trustworthy framework for representation learning across domains. Second, we provide basic notions and comprehensively summarize existing methods for the trustworthy framework from four concepts. Finally, we conclude this survey with insights and discussions on future research directions.Comment: 38 pages, 15 figure
    corecore