20 research outputs found

    In Situ Probing the Crystallization Kinetics in Gas‐Quenching‐Assisted Coating of Perovskite Films

    Get PDF
    The pursuit of commercializing perovskite photovoltaics is driving the development of various scalable perovskite crystallization techniques. Among them, gas quenching is a promising crystallization approach for high‐throughput deposition of perovskite films. However, the perovskite films prepared by gas‐quenching assisted blade coating are susceptible to the formation of pinholes and frequently show inferior crystallinity if the interplay between film coating, film drying, and crystallization kinetics is not fully optimized. That arguably requires a thorough understanding of how single processing steps influence the crystallization kinetics of printed perovskite films. Here, in situ optical spectroscopies are integrated into a doctor‐blading setup that allows to real‐time monitor film formation during the gas‐quenching process. It is found that the essential role of gas quenching treatment is in achieving a smooth and compact perovskite film by controlling the nucleation rate. Moreover, with the assistance of phase‐field simulations, the role of excessive methylammonium iodide is revealed to increase grain size by accelerating the crystal growth rate. These results show a tailored control of crystal growth rate is critical to achieving optimal film quality, leading to fully printed solar cells with a champion power conversion efficiency of 19.50% and mini solar modules with 15.28% efficiency are achieved.Utilizing in situ monitoring techniques to optimize the crystallization kinetics of the perovskite films in the gas‐quenching‐assisted blade coating process, a champion power conversion efficiency of 19.50% for a fully printed carbon‐electrode perovskite solar cell is achieved through the tailored control of crystal growth rates. image Bavarian State GovernmentNational Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809Guangzhou Basic and Applied Basic Research FoundationBavarian Ministry of Science and ArtsDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/50110000165

    Charge-Transfer Knowledge Graph among Amino Acids Derived from High-Throughput Electronic Structure Calculations for Protein Database

    No full text
    The anisotropic feature of charge transfer reactions in realistic proteins cannot be ignored, due to the highly complex chemical structure of bio-molecules. In this work, we have performed the first large-scale quantitative assessment of charge transfer preference in protein complexes by calculating the charge transfer couplings in all 20*20 possible amino acid side chain combinations, which are extracted from available high-quality structures of thousands of protein complexes. The charge transfer database quantitatively shows distinct features of charge transfer couplings among millions of amino acid side-chains combinations. The knowledge graph of charge transfer couplings reveals that only one average or representative structure cannot be regarded as the typical charge transfer preference in realistic proteins. This data driven model provides us an alternative route to comprehensively understand the pairwise charge transfer coupling parameters based structural similarity, without any require of the knowledge of chemical intuition about the chemical interactions.Comment: 19 pages, 5 figure

    Analysis of Correlation between Quality of Life and Subjective Evaluation of Air Quality—Empirical Research Based on CHARLS 2018 Data

    No full text
    This paper mainly focuses on the relationship between the subjective evaluation of air quality and the quality of life (QOL) of middle-aged and elderly residents in China. The 2018 China Health and Retirement Longitudinal Study (CHARLS) project database is the key sources of data, from which 16,736 valid samples were used in our research. Multivariate linear regression analysis and binomial logistic regression model were applied to detect the impact of the subjective evaluation of air quality on QOL, which was evaluated in two dimensions, which are health utility and experienced utility, using the health utility EQ-5D score and the experienced utility of life satisfaction score. Our results show that there is a significant positive correlation between the subjective evaluation of air quality and the two dimensions of QOL. Age, education, marital status and sleep status also have a relatively great impact on the QOL of residents. This worked studied the overall QOL of middle-aged and elderly residents in China, while policy suggestions regarding high-quality air public goods are also given in the paper

    Analysis of Correlation between Quality of Life and Subjective Evaluation of Air Quality—Empirical Research Based on CHARLS 2018 Data

    No full text
    This paper mainly focuses on the relationship between the subjective evaluation of air quality and the quality of life (QOL) of middle-aged and elderly residents in China. The 2018 China Health and Retirement Longitudinal Study (CHARLS) project database is the key sources of data, from which 16,736 valid samples were used in our research. Multivariate linear regression analysis and binomial logistic regression model were applied to detect the impact of the subjective evaluation of air quality on QOL, which was evaluated in two dimensions, which are health utility and experienced utility, using the health utility EQ-5D score and the experienced utility of life satisfaction score. Our results show that there is a significant positive correlation between the subjective evaluation of air quality and the two dimensions of QOL. Age, education, marital status and sleep status also have a relatively great impact on the QOL of residents. This worked studied the overall QOL of middle-aged and elderly residents in China, while policy suggestions regarding high-quality air public goods are also given in the paper

    Pretreatment with AM1241 Enhances the Analgesic Effect of Intrathecally Administrated Mesenchymal Stem Cells

    No full text
    Mesenchymal stem cells have cannabinoid (CB) receptors type 1 and type 2 and can alleviate a variety of neuropathic pains, including chronic constriction injury (CCI). A selective CB2 receptor agonist is AM1241. In the present study, it was found that mice with CCI displayed a longer duration of mechanical and thermal analgesia when intrathecally (i.t.) injected with AM1241-treated mesenchymal stem cells, compared to those injected with untreated mesenchymal stem cells or AM1241 alone. Moreover, CCI-induced upregulation of the phosphorylated extracellular signal-regulated kinase (ERK) 1/2 (p-ERK1/2) was inhibited following i.t. injection of AM1241-treated mesenchymal stem cells and this inhibition was noticeably higher compared to injection with untreated mesenchymal stem cells. The expression of transforming growth factor-β1 (TGF-β1) was also analyzed in the dorsal root ganglion (DRGs) and spinal cord of CCI mice. In untreated CCI mice, expression of TGF-β1 was increased, whereas pretreatment with AM1241-treated mesenchymal stem cells regulated the expression of TGF-β1 on 10 days and 19 days after surgery. In addition, i.t. injection of exogenous TGF-β1 slightly alleviated neuropathic pain whilst neutralization of TGF-β1 potently blocked the effect of AM1241-treated mesenchymal stem cells on thermal hyperalgesia and mechanical allodynia of CCI mice. In an in vitro experiment, AM1241 could enhance the release of TGF-β1 in the supernatant of BMSCs after lipopolysaccharide (LPS) simulation. Taken together, the findings of the current study show that i.t. administration of AM1241-treated mesenchymal stem cells has a positive effect on analgesia and that TGF-β1 and p-ERK1/2 may be the molecular signaling pathway involved in this process

    Prediction of Redox Potentials of Adrenaline and Its Supramolecular Complex with Glycine: Theoretical and Experimental Studies

    No full text
    Protonated adrenaline (PAd) can be oxidized to protonated adrenaline quinone (PAdquinone) through a one-step, two-electron redox reaction. The electron-transfer property of PAd and its supramolecular complex with glycine has been investigated by cyclic voltammetry (CV) experiment and theoretical calculations. From CV curves, the conditional formal redox potential <i>E</i>°′ of PAd/PAdquinone couple at the pH value of 0.29 is determined to be 0.540 V. The calculated <i>E</i>°′ using the G3MP2//B3LYP method and the B3LYP method with 6-31G­(d,p), 6-31+G­(d,p), 6-311G­(d,p), and B3LYP/6-311+G­(d,p) basis sets are in reasonable agreement with the experimental value. PAd can form supramolecular complex (PAd–Gly) with glycine (Gly) through hydrogen bond (H-bond), and the calculated <i>E</i>°′ values of PAd–Gly/PAdquinone–Gly redox couple are larger than those of PAd/PAdquinone couple. The theoretical results are in good agreement with the experimental finding that the formation of H-bonds weaken the electron-donating ability of PAd

    Atomic Resolution Insights into the Structural Aggregations and Optical Properties of Neat Imidazolium-Based Ionic Liquids

    No full text
    A fundamental understanding of the structural heterogeneity and optical properties of ionic liquids is crucial for their potential applications in catalysis, optical measurement, and solar cells. Herein, a synergistic approach combining molecular dynamics simulations, excited-state calculations, and statistical analysis was used to explore the explicit correlation between the structural and optical properties of one imidazolium amino acid-based ionic liquid, 1-butyl-3-methylimidazolium glycine. The estimated absorption spectrum successfully rationalizes the unusual and non-negligible absorption band beyond 300 nm for the neat imidazolium-based ionic liquid. The absorption behavior of imidazolium-based ionic liquids is shown to be sensitive to the details of their locally heterogeneous environments. We quantitatively highlight the imidazolium moiety and its various molecular aggregations, rather than the monomeric imidazolium moiety, that are responsible for the absorption characteristics. These results would improve our understanding of the preliminary interplay between structural heterogeneity and optical properties for neat imidazolium-based ionic liquids
    corecore