142 research outputs found

    Complex networks in climate dynamics - Comparing linear and nonlinear network construction methods

    Full text link
    Complex network theory provides a powerful framework to statistically investigate the topology of local and non-local statistical interrelationships, i.e. teleconnections, in the climate system. Climate networks constructed from the same global climatological data set using the linear Pearson correlation coefficient or the nonlinear mutual information as a measure of dynamical similarity between regions, are compared systematically on local, mesoscopic and global topological scales. A high degree of similarity is observed on the local and mesoscopic topological scales for surface air temperature fields taken from AOGCM and reanalysis data sets. We find larger differences on the global scale, particularly in the betweenness centrality field. The global scale view on climate networks obtained using mutual information offers promising new perspectives for detecting network structures based on nonlinear physical processes in the climate system.Comment: 24 pages, 10 figure

    Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    Get PDF
    ACKNOWLEDGMENTS MW and RVD have been supported by the German Federal Ministry for Education and Research (BMBF) via the Young Investigators Group CoSy-CC2 (grant no. 01LN1306A). JFD thanks the Stordalen Foundation and BMBF (project GLUES) for financial support. JK acknowledges the IRTG 1740 funded by DFG and FAPESP. MT Gastner is acknowledged for providing his data on the airline, interstate, and Internet network. P Menck thankfully provided his data on the Scandinavian power grid. We thank S Willner on behalf of the entire zeean team for providing the data on the world trade network. All computations have been performed using the Python package pyunicorn [41] that is available at https://github.com/pik-copan/pyunicorn.Peer reviewedPreprin

    Geometric signature of complex synchronisation scenarios

    Full text link
    Synchronisation between coupled oscillatory systems is a common phenomenon in many natural as well as technical systems. Varying the strength of coupling often leads to qualitative changes in the complex dynamics of the mutually coupled systems including different types of synchronisation such as phase, lag, generalised, or even complete synchronisation. Here, we study the geometric signatures of coupling along with the onset of generalised synchronisation between two coupled chaotic oscillators by mapping the systems' individual as well as joint recurrences in phase space to a complex network. For a paradigmatic continuous-time model system, the transitivity properties of the resulting joint recurrence networks display distinct variations associated with changes in the structural similarity between different parts of the considered trajectories. They therefore provide a useful indicator for the emergence of generalised synchronisation. This paper is dedicated to the 25th anniversary of the introduction of recurrence plots by Eckmann et al. (Europhys. Lett. 4 (1987), 973).Comment: 7 pages, 3 figure

    Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    Get PDF
    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalised clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.Comment: 16 pages, 5 figure

    How complex climate networks complement eigen techniques for the statistical analysis of climatological data

    Full text link
    Eigen techniques such as empirical orthogonal function (EOF) or coupled pattern (CP) / maximum covariance analysis have been frequently used for detecting patterns in multivariate climatological data sets. Recently, statistical methods originating from the theory of complex networks have been employed for the very same purpose of spatio-temporal analysis. This climate network (CN) analysis is usually based on the same set of similarity matrices as is used in classical EOF or CP analysis, e.g., the correlation matrix of a single climatological field or the cross-correlation matrix between two distinct climatological fields. In this study, formal relationships as well as conceptual differences between both eigen and network approaches are derived and illustrated using exemplary global precipitation, evaporation and surface air temperature data sets. These results allow to pinpoint that CN analysis can complement classical eigen techniques and provides additional information on the higher-order structure of statistical interrelationships in climatological data. Hence, CNs are a valuable supplement to the statistical toolbox of the climatologist, particularly for making sense out of very large data sets such as those generated by satellite observations and climate model intercomparison exercises.Comment: 18 pages, 11 figure

    Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal

    Get PDF
    The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2°C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario
    corecore