2,604 research outputs found

    Orbital-selective Mott transitions in the anisotropic two-band Hubbard model at finite temperatures

    Full text link
    The anisotropic degenerate two-orbital Hubbard model is studied within dynamical mean-field theory at low temperatures. High-precision calculations on the basis of a refined quantum Monte Carlo (QMC) method reveal that two distinct orbital-selective Mott transitions occur for a bandwidth ratio of 2 even in the absence of spin-flip contributions to the Hund exchange. The second transition -- not seen in earlier studies using QMC, iterative perturbation theory, and exact diagonalization -- is clearly exposed in a low-frequency analysis of the self-energy and in local spectra.Comment: 4 pages, 5 figure

    Charge-density-wave order parameter of the Falicov-Kimball model in infinite dimensions

    Full text link
    In the large-U limit, the Falicov-Kimball model maps onto an effective Ising model, with an order parameter described by a BCS-like mean-field theory in infinite dimensions. In the small-U limit, van Dongen and Vollhardt showed that the order parameter assumes a strange non-BCS-like shape with a sharp reduction near T approx T_c/2. Here we numerically investigate the crossover between these two regimes and qualitatively determine the order parameter for a variety of different values of U. We find the overall behavior of the order parameter as a function of temperature to be quite anomalous.Comment: (5 pages, 3 figures, typeset with ReVTeX4

    Symmetry breaking in the Hubbard model at weak coupling

    Full text link
    The phase diagram of the Hubbard model is studied at weak coupling in two and three spatial dimensions. It is shown that the Neel temperature and the order parameter in d=3 are smaller than the Hartree-Fock predictions by a factor of q=0.2599. For d=2 we show that the self-consistent (sc) perturbation series bears no relevance to the behavior of the exact solution of the Hubbard model in the symmetry-broken phase. We also investigate an anisotropic model and show that the coupling between planes is essential for the validity of mean-field-type order parameters

    Sexual Dimorphism in the Prenatal Digit Ratio (2D:4D)

    Get PDF
    The second to fourth digit ratio (2D:4D) is smaller in human males than in females and hence this trait is sexually dimorphic. The digit ratio is thought to be established during early prenatal development under the influence of prenatal sex hormones. However, the general assumption of early establishment has hardly been studied. In our study, we analyzed the 2D:4D ratio in 327 deceased human fetuses. We measured digit lengths in 169 male and 158 female fetuses ranging from 14 to 42 weeks old. Our results showed a slight, but significant, sexual dimorphism in the expected direction, i.e., females had, on average, a ratio of 0.924 and males a ratio of 0.916. There was no significant relationship with the presence or absence of minor and major or single and multiple congenital abnormalities. There was a minimal, but significant difference between digit ratios based on digit lengths including and excluding the non-bony fingertip with the values being strongly correlated (r = .98). The prenatal 2D:4D ratio was lower than has thus far been reported for children and adults both for males and females. The extent of the sexual dimorphism in fetuses was similar to that found for children, but lower than for adults. The 2D:4D ratio, thus, seems to increase after birth in both men and women, with the second digit growing faster than the fourth digit (positive allometric growth of digit two) and perhaps more so in women than in men. Therefore, the sexual dimorphism is probably determined by prenatal as well as by postnatal developmental processes

    Scaling Theory for Migration-Driven Aggregate Growth

    Full text link
    We give a comprehensive rate equation description for the irreversible growth of aggregates by migration from small to large aggregates. For a homogeneous rate K(i;j) at which monomers migrate from aggregates of size i to those of size j, that is, K(ai;aj) ~ a^{lambda} K(i,j), the mean aggregate size grows with time as t^{1/(2-lambda)} for lambda<2. The aggregate size distribution exhibits distinct regimes of behavior which are controlled by the scaling properties of the migration rate from the smallest to the largest aggregates. Our theory applies to diverse phenomena, such as the distribution of city populations, late stage coarsening of non-symmetric binary systems, and models for wealth exchange.Comment: 4 pages, 2-column revtex format. Revision to appear in PRL. Various changes in response to referee comments. Figure from version 1 deleted but is available at http://physics.bu.edu/~redne

    Cardiovascular-renal axis disorders in the domestic dog and cat: a veterinary consensus statement

    Get PDF
    OBJECTIVES There is a growing understanding of the complexity of interplay between renal and cardiovascular systems in both health and disease. The medical profession has adopted the term "cardiorenal syndrome" (CRS) to describe the pathophysiological relationship between the kidney and heart in disease. CRS has yet to be formally defined and described by the veterinary profession and its existence and importance in dogs and cats warrant investigation. The CRS Consensus Group, comprising nine veterinary cardiologists and seven nephrologists from Europe and North America, sought to achieve consensus around the definition, pathophysiology, diagnosis and management of dogs and cats with "cardiovascular-renal disorders" (CvRD). To this end, the Delphi formal methodology for defining/building consensus and defining guidelines was utilised. METHODS Following a literature review, 13 candidate statements regarding CvRD in dogs and cats were tested for consensus, using a modified Delphi method. As a new area of interest, well-designed studies, specific to CRS/CvRD, are lacking, particularly in dogs and cats. Hence, while scientific justification of all the recommendations was sought and used when available, recommendations were largely reliant on theory, expert opinion, small clinical studies and extrapolation from data derived from other species. RESULTS Of the 13 statements, 11 achieved consensus and 2 did not. The modified Delphi approach worked well to achieve consensus in an objective manner and to develop initial guidelines for CvRD. DISCUSSION The resultant manuscript describes consensus statements for the definition, classification, diagnosis and management strategies for veterinary patients with CvRD, with an emphasis on the pathological interplay between the two organ systems. By formulating consensus statements regarding CvRD in veterinary medicine, the authors hope to stimulate interest in and advancement of the understanding and management of CvRD in dogs and cats. The use of a formalised method for consensus and guideline development should be considered for other topics in veterinary medicine

    Toward a systematic 1/d expansion: Two particle properties

    Full text link
    We present a procedure to calculate 1/d corrections to the two-particle properties around the infinite dimensional dynamical mean field limit. Our method is based on a modified version of the scheme of Ref. onlinecite{SchillerIngersent}}. To test our method we study the Hubbard model at half filling within the fluctuation exchange approximation (FLEX), a selfconsistent generalization of iterative perturbation theory. Apart from the inherent unstabilities of FLEX, our method is stable and results in causal solutions. We find that 1/d corrections to the local approximation are relatively small in the Hubbard model.Comment: 4 pages, 4 eps figures, REVTe

    Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model

    Full text link
    The simplest statistical-mechanical model of crystalline formation (or alloy formation) that includes electronic degrees of freedom is solved exactly in the limit of large spatial dimensions and infinite interaction strength. The solutions contain both second-order phase transitions and first-order phase transitions (that involve phase-separation or segregation) which are likely to illustrate the basic physics behind the static charge-stripe ordering in cuprate systems. In addition, we find the spinodal-decomposition temperature satisfies an approximate scaling law.Comment: 19 pages and 10 figure
    corecore