6,969 research outputs found

    Advanced switching schemes in a Stark decelerator

    Get PDF
    We revisit the operation of the Stark decelerator and present a new, optimized operation scheme, which substantially improves the efficiency of the decelerator at both low and high final velocities, relevant for trapping experiments and collision experiments, respectively. Both experimental and simulation results show that this new mode of operation outperforms the schemes which have hitherto been in use. This new mode of operation could potentially be extended to other deceleration techniques

    An Improved Algorithm for Fixed-Hub Single Allocation Problem

    Full text link
    This paper discusses the fixed-hub single allocation problem (FHSAP). In this problem, a network consists of hub nodes and terminal nodes. Hubs are fixed and fully connected; each terminal node is connected to a single hub which routes all its traffic. The goal is to minimize the cost of routing the traffic in the network. In this paper, we propose a linear programming (LP)-based rounding algorithm. The algorithm is based on two ideas. First, we modify the LP relaxation formulation introduced in Ernst and Krishnamoorthy (1996, 1999) by incorporating a set of validity constraints. Then, after obtaining a fractional solution to the LP relaxation, we make use of a geometric rounding algorithm to obtain an integral solution. We show that by incorporating the validity constraints, the strengthened LP often provides much tighter upper bounds than the previous methods with a little more computational effort, and the solution obtained often has a much smaller gap with the optimal solution. We also formulate a robust version of the FHSAP and show that it can guard against data uncertainty with little cost

    A super-Eddington wind scenario for the progenitors of type Ia supernovae: binary population synthesis calculations

    Full text link
    The super-Eddington wind scenario has been proposed as an alternative way for producing type Ia supernovae (SNe Ia). The super-Eddington wind can naturally prevent the carbon--oxygen white dwarfs (CO WDs) with high mass-accretion rates from becoming red-giant-like stars. Furthermore, it works in low-metallicity environments, which may explain SNe Ia observed at high redshifts. In this article, we systematically investigated the most prominent single-degenerate WD+MS channel based on the super-Eddington wind scenario. We combined the Eggleton stellar evolution code with a rapid binary population synthesis (BPS) approach to predict SN Ia birthrates for the WD+MS channel by adopting the super-Eddington wind scenario and detailed mass-accumulation efficiencies of H-shell flashes on the WDs. Our BPS calculations found that the estimated SN Ia birthrates for the WD+MS channel are ~0.009-0.315*10^{-3}{yr}^{-1} if we adopt the Eddington accretion rate as the critical accretion rate, which are much lower than that of the observations (<10% of the observed SN Ia birthrates). This indicates that the WD+MS channel only contributes a small proportion of all SNe Ia. The birthrates in this simulation are lower than previous studies, the main reason of which is that new mass-accumulation efficiencies of H-shell flashes are adopted. We also found that the critical mass-accretion rate has a significant influence on the birthrates of SNe Ia. Meanwhile, the results of our BPS calculations are sensitive to the values of the common-envelope ejection efficiency.Comment: 14 pages, 9 figures, 1 table, accepted for publication in Astronomy and Astrophysic
    corecore