56 research outputs found
A Three-Phase Interleaved Floating Output Boost Converter
High step-up dc-dc converter is an essential part in several renewable energy systems. In this paper, a new topology of step-up dc-dc converter based on interleaved structure is proposed. The proposed converter uses three energy storing capacitors to achieve a high voltage gain. Besides the high voltage gain feature, the proposed converter also reduces the voltage stress across the semiconductor switches. This helps in using low rating switching devices which can reduce the overall size and cost of the converter. The operating principle of the proposed converter is discussed in detail and its principle waveforms are analyzed. An experiment is carried out on a 20 V input, 130 V output, and 21 W power prototype of the proposed converter in the laboratory to verify the performance of the proposed converter. An efficiency of 91.3% is achieved at the rated load
A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells
The sluggish oxygen reduction reaction (ORR) greatly reduces the energy efficiency of solid oxide fuel cells (SOFCs). Here we report our findings in dramatically enhancing the ORR kinetics and durability of the state-of-the-art La[subscript 0.6]Sr[subscript 0.4]Co[subscript 0.2]Fe[subscript 0.8]O[subscript 3](LSCF) cathode using a hybrid catalyst coating composed of a conformal PrNi[subscript 0.5]Mn[subscript 0.5]O[subscript 3](PNM) thin film with exsoluted PrOxnanoparticles. At 750°C, the hybrid catalyst-coated LSCF cathode shows a polarization resistance of ∼0.022 Ω cm[superscript 2], about 1/6 of that for a bare LSCF cathode (∼0.134 Ω cm[superscript 2]). Further, anode-supported cells with the hybrid catalyst-coated LSCF cathode demonstrate remarkable peak power densities (∼1.21 W cm[superscript -2]) while maintaining excellent durability (0.7 V for ∼500 h). Near Ambient X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-Ray Absorption Fine Structure (NEXAFS) analyses, together with density functional theory (DFT) calculations, indicate that the oxygen-vacancy-rich surfaces of the PrOxnanoparticles greatly accelerate the rate of electron transfer in the ORR whereas the thin PNM film facilitates rapid oxide-ion transport while drastically enhancing the surface stability of the LSCF electrode
Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering
Surface-enhanced Raman scattering (SERS) is ideally suited for probing and mapping surface species and incipient phases on fuel cell electrodes because of its high sensitivity and surface-selectivity, potentially offering insights into the mechanisms of chemical and energy transformation processes. In particular, bimetal nanostructures of coinage metals (Au, Ag, and Cu) have attracted much attention as SERS-active agents due to their distinctive electromagnetic field enhancements originated from surface plasmon resonance. Here we report excellent SERS-active, raspberry-like nanostructures composed of a silver (Ag) nanoparticle core decorated with smaller copper (Cu) nanoparticles, which displayed enhanced and broadened UV-Vis absorption spectra. These unique Ag@Cu raspberry nanostructures enable us to use blue, green, and red light as the excitation laser source for surface-enhanced Raman spectroscopy (SERS) with a large enhancement factor (EF). A highly reliable SERS effect was demonstrated using Rhodamine 6G (R6G) molecules and a thin film of gadolinium doped ceria.close3
RpoS Regulates a Novel Type of Plasmid DNA Transfer in Escherichia coli
Spontaneous plasmid transformation of Escherichia coli is independent of the DNA uptake machinery for single-stranded DNA (ssDNA) entry. The one-hit kinetic pattern of plasmid transformation indicates that double-stranded DNA (dsDNA) enters E. coli cells on agar plates. However, DNA uptake and transformation regulation remain unclear in this new type of plasmid transformation. In this study, we developed our previous plasmid transformation system and induced competence at early stationary phase. Despite of inoculum size, the development of competence was determined by optical cell density. DNase I interruption experiment showed that DNA was taken up exponentially within the initial 2 minutes and most transforming DNA entered E. coli cells within 10 minutes on LB-agar plates. A half-order kinetics between recipient cells and transformants was identified when cell density was high on plates. To determine whether the stationary phase master regulator RpoS plays roles in plasmid transformation, we investigated the effects of inactivating and over-expressing its encoding gene rpoS on plasmid transformation. The inactivation of rpoS systematically reduced transformation frequency, while over-expressing rpoS increased plasmid transformation. Normally, RpoS recognizes promoters by its lysine 173 (K173). We found that the K173E mutation caused RpoS unable to promote plasmid transformation, further confirming a role of RpoS in regulating plasmid transformation. In classical transformation, DNA was transferred across membranes by DNA uptake proteins and integrated by DNA processing proteins. At stationary growth phase, RpoS regulates some genes encoding membrane/periplasmic proteins and DNA processing proteins. We quantified transcription of 22 of them and found that transcription of only 4 genes (osmC, yqjC, ygiW and ugpC) encoding membrane/periplasmic proteins showed significant differential expression when wildtype RpoS and RpoSK173E mutant were expressed. Further investigation showed that inactivation of any one of these genes did not significantly reduce transformation, suggesting that RpoS may regulate plasmid transformation through other/multiple target genes
High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials
In situ probing of surface species and incipient phases is vital to unraveling the mechanisms of chemical and energy transformation processes. Here we report Ag nanoparticles coated with a thin-film SiO2 shell that demonstrate excellent thermal robustness and chemical stability for surface enhanced Raman spectroscopy (SERS) study of solid oxide fuel cell materials under in situ conditions (at ???400 ??C).close3
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Raman spectroscopic investigation on electrochemical energy storage for pseudocapacitors and Li-ion batteries
Electrochemical energy storage devices, such as batteries and pseudocapacitors, are the most promising power supply for many emerging technologies, from portable electronics to electrical vehicles and smart grids. While incremental progress in performance of these devices has been made in recent years, dramatic advancement is hindered by the lack of a profound understanding of the atomic level energy storage mechanism of Li-ion batteries and pseudocapacitors. This dissertation carries out a series of fundamental mechanism studies for a few important electrode materials of Li-ion batteries and supercapacitors using in operando Raman spectroscopy. This study revealed the detailed structural changes of electrode materials during energy storage from the evolution of vibrational structures as a function of electrochemical operations. To better explain this rationale, this dissertation discusses briefly the fundamental concepts and principles, including electrochemistry, Raman spectroscopy, and in operando configurations as well as basic experimental setups, prior to the chapters of detailed research results. The first material studied in this dissertation is layered manganese oxide (MnO2), the most characteristic pseudocapacitive material. The cation size effects observed in the in operando Raman evolution of MnO2 clearly proved the interlayer cation storage mechanism. Secondly, the dissertation also probed the energy storage of layered nickel hydroxide/oxo-hydroxide (NiO2Hx), which has a structure similar to that of layered MnO2 and features the transitional electrochemical behavior between the pseudocapacitor and the battery with very high energy density. Correlations between Raman spectroscopic evolution and electrochemical behavior proved that the break/formation of O-H bonds in NiO2Hx contribute to the electrochemical energy storage primarily while cation incorporation between NiO2Hx layers plays a minor role. Thirdly, this dissertation investigated the mechanism of energy storage of T-Nb2O5, which can store Li ions at an exceptionally fast rate similar to a capacitor. Through a comparison between in operando Raman spectroscopic evolution and a theoretical calculation of the vibrational structure of the proposed model, it is found that Li ions are preferably stored on the 2D voids of Nb-O bonding facets similar to the surface-bound capacitive behavior, which unravels the Li-ion incorporation mechanism responsible for fast energy storage. In addition to the research results, a few recommendations are provided about more aspects of energy storage/conversion mechanisms, the application of advanced Raman spectroscopy, and the advanced in operando mechanism analyses. The research work described in this dissertation has contributed significant new discoveries for fundamental chemistry and physics relevant to energy science. Moreover, information about mechanisms unraveled in this dissertation can be helpful for rational design of material structures and compositions for unique functionalities, which will ultimately contribute to engineering developments in the energy storage industry. Finally, the general methodology of this dissertation can be readily applied to other research fields to probe the correlation between external functionalities and intrinsic properties of materials.Ph.D
Circ_0010235 confers cisplatin resistance in lung cancer by upregulating E2F7 through absorbing miR‐379‐5p
Abstract Background Cisplatin (DDP) treatment is one of the most predominant chemotherapeutic strategies for lung cancer patients. Circular RNAs (circRNAs) have been revealed to participate in the chemoresistance in lung cancer. Hence, the role and mechanism of circ_0010235 in cisplatin resistance in lung cancer was investigated. Methods Expression levels of circ_0010235, microRNA (miR)‐379‐5p and E2F transcription factor 7 (E2F7) were analyzed using quantitative reverse transcription PCR (qRT‐PCR) and western blot. Cell DDP sensitivity, proliferation, apoptosis, invasion, and migration were detected by cell counting kit‐8 assay, 5‐ethynyl‐2′‐deoxyuridine (EDU) assay, flow cytometry and western blot, respectively. The binding interaction was verified using dual‐luciferase reporter assay. A murine xenograft model was established to investigate effects in vivo. Results Circ_0010235 was highly expressed in DDP‐resistant lung cancer tissues and cells. Knockdown of circ_0010235 elevated DDP sensitivity, constrained proliferation, invasion and migration as well as fostered apoptosis in DDP‐resistant lung cancer cells. Moreover, circ_0010235 silencing boosted DDP sensitivity and impeded tumor growth in lung cancer in vivo. Mechanistically, circ_0010235 acted as a sponge for miR‐379‐5p to elevate the expression of its target E2F7. Rescue experiments showed that miR‐379‐5p inhibition attenuated circ_0010235 knockdown‐evoked reduction on DDP resistance of DDP‐resistant cancer cells. In addition, miR‐379‐5p re‐expression elevated DDP sensitivity and suppressed the malignant phenotype of DDP‐resistant lung cancer cells through miR‐379‐5p. Conclusion Circ_0010235 knockdown reduced DDP resistance and tumor growth via miR‐379‐5p/ E2F7 axis in lung cancer, suggesting an effective therapeutic target for lung cancer patients
- …