15 research outputs found

    Numerical Investigation of Spatial Effects on the Silicon Solar Cell

    Get PDF
    Investigating the effect of device dimension on the silicon solar cell, by using the PC1D numerical simulation environment, we report strong correlation of efficiency of the silicon solar cell with its size. The results showcase finer efficiency at the lower n-type thickness and higher p-type thickness. The internal quantum efficiency (IQE) and external quantum efficiency (EQE) too exhibit variation with the device size. As a whole, based on the statistical analysis, especially regression, variance, and best subsets selection, the paper depicts that the p-type thickness, ISC and VOC are the preeminent parameters to model the silicon solar cell

    Piecewise Linear and Nonlinear Window Functions for Modelling of Nanostructured Memristor Device

    Get PDF
    The present paper reports two new window functions viz. piecewise linear window function and nonlinear window function for modelling of the nanostructured memristor device. The piecewise linear window function can be used for modelling of symmetric pinched hysteresis loop in I-V plane (for digital memory applications) and the nonlinear window function can be used for modelling of nonlinear pinched hysteresis loop in I-V plane (for analog memory applications). Flexibility in the parameter selection is the main attractive feature of these window functions

    Artificial Neural Network Modeling of NixMnxOx based Thermistor for Predicative Synthesis and Characterization

    Get PDF
    As foremost sensors of ambient conditions, temperature sensors are regarded as the most vital ones in wide-ranging applications touching the societal life. Amongst the temperature sensors, NTC thermistors have captured their unique place due to the favorable metrics such as highest sensitivity, low cost, and ease of deployment. Transition metal oxides especially the NixMnxOx are widely used for thermistor synthesis in spite of the main difficulty of predicting the final sensor characteristics before the actual synthesis. In view of the above, we report an Artificial Neural Network (ANN) technique to accomplish the synthesis with predictable results saving valuable resources. In the said ANN modeling we use hyperbolic tangent sigmoid transfer function for input layer and linear transfer function for the output layer. Levenberg-Marquardt feed-forward algorithm trains the neural net. We measure the performance of the ANN model with regard to mean square error (MSE) and the correlation coefficient between expected output and output provided by the network. Moreover, we uniquely model the resistance-temperature (R-T) characteristics of different thermistor samples using optimized ANN structure. To model such sort of behavior, we provide nickel content, room temperature resistance, and concentration of oxalic acid as an input data to the network and predict the nickel acetate and manganese acetate concentration. The accomplished ANN modeling evidences a lower number of hidden neuron architecture exhibiting optimum performance as regards to prediction accuracy. The lower number of hidden neurons signifies a lesser amount of memory required for prediction of different chemical composition. Thus, we demonstrate exploitation of modeling, simulation and soft computational approaches for predicting the best suitable chemical composition and thus establish the synergy between the materials science and soft computing paradigm

    Piecewise Linear and Nonlinear Window Functions for Modelling of Nanostructured Memristor Device

    Get PDF
    The present paper reports two new window functions viz. piecewise linear window function and nonlinear window function for modelling of the nanostructured memristor device. The piecewise linear window function can be used for modelling of symmetric pinched hysteresis loop in I-V plane (for digital memory applications) and the nonlinear window function can be used for modelling of nonlinear pinched hysteresis loop in I-V plane (for analog memory applications). Flexibility in the parameter selection is the main attractive feature of these window functions

    A Processing in Memory Realization Using Quantum Dot Cellular Automata (QCA): Proposal and Implementation

    Get PDF
    Processing in Memory (PIM) is a computing paradigm that promises enormous gain in processing speed by eradicating latencies in the typical von Neumann architecture. It has gained popularity owing to its throughput by embedding storage and computation of data in a single unit. We portray implementation of Akers array architecture endowed with PIM computation using Quantum-dot Cellular Automata (QCA). We present the proof of concept of PIM with its realization in the QCA designer paradigm. We illustrate implementation of Ex-OR gate with the help of QCA based Akers Array and put forth many interesting potential possibilities

    Investigating the Temperature Effects on ZnO, TiO2, WO3 and HfO2 Based Resistive Random Access Memory (RRAM) Devices

    Get PDF
    In this paper, we report the effect of filament radius and filament resistivity on the ZnO, TiO2, WO3 and HfO2 based Resistive Random Access Memory (RRAM) devices. We resort to the thermal reaction model of RRAM for the present analysis. The results substantiate decrease in saturated temperature with increase in the radius and resistivity of filament for the investigated RRAM devices. Moreover, a sudden change in the saturated temperature at a lower value of filament radius and resistivity is observed as against the steady change at the medium and higher value of the filament radius and resistivity. Results confirm the dependence of saturated temperature on the filament size and resistivity in RRAM

    Investigating the Temperature Effects on ZnO, TiO2, WO3 and HfO2 Based Resistive Random Access Memory (RRAM) Devices

    Get PDF
    In this paper, we report the effect of filament radius and filament resistivity on the ZnO, TiO2, WO3 and HfO2 based Resistive Random Access Memory (RRAM) devices. We resort to the thermal reaction model of RRAM for the present analysis. The results substantiate decrease in saturated temperature with increase in the radius and resistivity of filament for the investigated RRAM devices. Moreover, a sudden change in the saturated temperature at a lower value of filament radius and resistivity is observed as against the steady change at the medium and higher value of the filament radius and resistivity. Results confirm the dependence of saturated temperature on the filament size and resistivity in RRAM

    Дослідження моделювання постійного, змінного та перехідного струмів кантілівера MEMS

    No full text
    Робота присвячена дослідженню моделювання постійного, змінного та перехідного струмів кантілівера MEMS. У роботі моделюється прямокутна система відкритого типу. У даному випадку ми змінювали довжину кантілівера MEMS (платиновий електрод) і вивчали його вплив у наступних випадках: i) вплив напруги на ємність і положення променю (аналіз постійного струму), ii) положення променю у часовій області, ємність і напруга (аналіз змінного струму) та iii) положення променю у часовій області, ємність і напруга (аналіз перехідних процесів). Результати показали, що довжина активного електрода кантілівера MEMS значно впливає на продуктивність MEMS. Крім того, напруга на кантілівері MEMS лінійно зростає з часом і виявилося, що вона не залежить від довжини електрода і діелектричних матеріалів, які використовувалися в розглянутій системі.The present reports deals with the DC, AC, and transient simulation study of MEMS cantilever. The open-ended rectangular system is simulated in the present investigation. In the present case, we have varied the length of MEMS cantilever (platinum electrode) and studied its effect on the following cases: i) the effect of voltage on the capacitance and beam position (DC analysis), ii) time domain beam position, capacitance, and voltage (AC analysis), and iii) time domain beam position, capacitance, and voltage (transient analysis). The results suggested that the length of an active electrode of MEMS cantilever significantly affects the MEMS performance. In addition, the voltage of MEMS cantilever linearly increases with respect to time and it was found to be independent of the electrode length and dielectric materials, which were used in the considered system

    Залежні від форми оптичні властивості квантової точки GaAs: модельне дослідження

    No full text
    The present paper deals with the simulation study of the GaAs quantum dot with different shapes such as cuboid, cylinder, dome, cone, and pyramid. We have simulated various structures and investigated the shape dependent optical properties using open source simulation tool available on the NanoHub platform. This simulation tool can simulate the simple as well as multilayer zero-dimensional structures by solving Schrödinger equations. The results suggested that the energy states vary according to the shape and higher energy states are observed for cone-shaped whereas, cuboid shape shows lower energy states for zero-dimensional structure. Furthermore, optical simulation study suggested that the cuboid and cylinder shapes show maximum absorption whereas, minimum absorption is observed for the dome-shape. The higher absorption is due to the higher surface area of cuboid and cylinder shape, whereas, the insufficient polarization angle of the incident light lowers the absorption for the dome shape structure. Furthermore, the absorption property is not significantly altered during different temperature environments. The integrated absorption results suggested that the cuboid and cylinder shapes have higher absorption whereas, minimum integrated absorption is observed for the cone and pyramid shape zero-dimensional structures. The present results pave the way towards optimization of various parameters of quantum dot for optoelectronic applications.У роботі розглянуто моделювання квантової точки GaAs з різними формами, такими як кубічна, циліндрична, куполоподібна, конусоподібна і пірамідальна. Проведено моделювання різних структур і досліджено оптичні властивості в залежності від форми квантової точки, використовуючи інструмент моделювання з відкритим вхідним кодом, доступний на платформі NanoHub. За його допомогою мож- на моделювати як прості, так і багатошарові структури нульової розмірності, розв’язуючи рівняння Шредінгера. Отримані результати свідчать про те, що енергетичні стани змінюються в залежності від форми квантової точки, для конусоподібних точок спостерігаються більш високі енергетичні стани. Крім того, моделювання показало, що кубічна і циліндрична форми мають максимальне поглинання, тоді як мінімальне поглинання спостерігається для куполоподібної форми. Більш високе поглинання відбувається за рахунок більшої площі поверхні кубічної і циліндричної форм, тоді як недостатній кут поляризації падаючого світла знижує поглинання для структури куполоподібної форми. Крім того, поглинальна властивість суттєво не змінюється при різних температурах середовища. Результати інтегрованого поглинання показали, що кубічна і циліндрична форми мають більш високе поглинання, тоді як мінімальне поглинання спостерігається для конусоподібної і пірамідальної форм структур нульової розмірності. Наведені результати відкривають шлях до оптимізації різних параметрів квантової точки для оптоелектронних приладів
    corecore