3,242 research outputs found

    Comparison of Different Lymph Node Staging Systems in Patients With Resectable Colorectal Cancer

    Get PDF
    Background and Objectives: Currently, the United States Joint Commission on Cancer (AJCC) N staging, lymph node positive rate (LNR), and log odds of positive lymph nodes (LODDS) are the main lymph node (LN) staging systems. However, the type of LN staging system that is more accurate in terms of prognostic performance remains controversial. We compared the prognostic accuracy of the three staging systems in patients with CRC and determine the best choice for clinical applications.Methods: From the Surveillance, Epidemiology, and End Results (SEER) database, 56,747 patients were identified who were diagnosed with CRC between 2004 and 2013. Akaike's Information Criterion (AIC) and Harrell's Consistency Index (c-index) were used to assess the relative discriminative abilities of different LN staging systems.Results: In 56,747 patients, when using classification cut-off values for evaluation, the LNR of Rosenberg et al. showed significantly better predictive power, especially when the number of dissected lymph nodes (NDLN) were insufficient. When analyzed as a continuous variable, the LODDS staging system performed the best and was not affected by the NDLN.Conclusions: We suggest that the LNR of Rosenberg et al. should be introduced into the AJCC system as a supplement when the NDLN is insufficient until the optimal LODDS cut-off values are calculated

    Theoretical Model Construction of Deformation-Force for Soft Grippers Part I: Co-rotational Modeling and Force Control for Design Optimization

    Full text link
    Compliant grippers, owing to adaptivity and safety, have attracted considerable attention for unstructured grasping in real applications, such as industrial or logistic scenarios. However, accurately modeling the bidirectional relationship between shape deformation and contact force for such grippers, the Fin-Ray grippers as an example, remains stagnant to date. To address this research gap, this article devises, presents, and experimentally validates a universal bidirectional force-displacement mathematical model for compliant grippers based on the co-rotational concept, which endows such grippers with an intrinsic force sensing capability and offers a better insight into the design optimization. In Part I of the article, we introduce the fundamental theory of the co-rotational approach, where arbitrary large deformation of beam elements can be modeled. Its intrinsic principle allows taking materials with varying stiffness, various connection types, and key design parameters into consideration with few assumptions. Further, the force-displacement relationship is numerically derived, providing accurate displacement estimations of the gripper under external forces with minor computational loads. The performance of the proposed method is experimentally verified through comparison with Finite Element Analysis (FEA) in simulation, obtaining a fair degree of accuracy (6%), and design optimization of Fin-Ray grippers is systematically investigated. Part II of this article demonstrating the force sensing capabilities and the effects of representative co-rotational modeling parameters on model accuracy is released in Arxiv

    Novel online data allocation for hybrid memories on tele-health systems

    Full text link
    [EN] The developments of wearable devices such as Body Sensor Networks (BSNs) have greatly improved the capability of tele-health industry. Large amount of data will be collected from every local BSN in real-time. These data is processed by embedded systems including smart phones and tablets. After that, the data will be transferred to distributed storage systems for further processing. Traditional on-chip SRAMs cause critical power leakage issues and occupy relatively large chip areas. Therefore, hybrid memories, which combine volatile memories with non-volatile memories, are widely adopted in reducing the latency and energy cost on multi-core systems. However, most of the current works are about static data allocation for hybrid memories. Those mechanisms cannot achieve better data placement in real-time. Hence, we propose online data allocation for hybrid memories on embedded tele-health systems. In this paper, we present dynamic programming and heuristic approaches. Considering the difference between profiled data access and actual data access, the proposed algorithms use a feedback mechanism to improve the accuracy of data allocation during runtime. Experimental results demonstrate that, compared to greedy approaches, the proposed algorithms achieve 20%-40% performance improvement based on different benchmarks. (C) 2016 Elsevier B.V. All rights reserved.This work is supported by NSF CNS-1457506 and NSF CNS-1359557.Chen, L.; Qiu, M.; Dai, W.; Hassan Mohamed, H. (2017). Novel online data allocation for hybrid memories on tele-health systems. Microprocessors and Microsystems. 52:391-400. https://doi.org/10.1016/j.micpro.2016.08.003S3914005

    Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2

    Full text link
    The in-plane resistivity ρ\rho and thermal conductivity κ\kappa of FeAs-based superconductor KFe2_2As2_2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior ρ(T)T1.5\rho(T) \sim T^{1.5} at Hc2H_{c_2} = 5 T, and the development of a Fermi liquid state with ρ(T)T2\rho(T) \sim T^2 when further increasing field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field Hc2H_{c_2}. In zero field there is a large residual linear term κ0/T\kappa_0/T, and the field dependence of κ0/T\kappa_0/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2_2As2_2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485

    Theoretical Model Construction of Deformation-Force for Soft Grippers Part II: Displacement Control Based Intrinsic Force Sensing

    Full text link
    Force-aware grasping is an essential capability for most robots in practical applications. Especially for compliant grippers, such as Fin-Ray grippers, it still remains challenging to build a bidirectional mathematical model that mutually maps the shape deformation and contact force. Part I of this article has constructed the force-displacement relationship for design optimization through the co-rotational theory. In Part II, we further devise a displacement-force mathematical model, enabling the compliant gripper to precisely estimate contact force from deformations sensor-free. The presented displacement-force model elaborately investigates contact forces and provides force feedback for a force control system of a gripper, where deformation appears as displacements in contact points. Afterward, simulation experiments are conducted to evaluate the performance of the proposed model through comparisons with the finite-element analysis (FEA) in Ansys. Simulation results reveal that the proposed model accurately estimates contact force, with an average error of around 3% and 4% for single or multiple node cases, respectively, regardless of various design parameters (Part I of this article is released in Arxiv1

    Downregulation of microRNA-376a in Gastric Cancer and Association with Poor Prognosis

    Get PDF
    Background/Aims: MicroRNAs have a significant role in the tumorigenesis and progression of cancers, including gastric cancer (GC). Our study aimed to identify a novel biomarker to predict the prognosis of patients with GC. Methods: The GC microarray dataset, GSE28700, was downloaded from the Gene Expression Omnibus (GEO) database and screened for differentially expressed miRNAs (DEMs). The downregulation of miR-376a expression was verified in GC cell lines and 82 paired GC tissues by performing RT-qPCR and the correlation between its expression and clinicopathological characteristics was also explored. The target genes of miR-376a were predicted using TargetScan7.1, miRDB, and DIANA website tools. A functional enrichment analysis was performed to explore the biological role of the common target genes. Results: Bioinformatics analysis found that miR-376a was downregulated in GC tissues. Compared with the control group, RT-qPCR results showed that the expression of miR-376a in GC cell lines and tissues were also significantly decreased. The expression of miR-376a was statistically associated with T and N stage. Survival analysis with Kaplan–Meier showed that GC patients in the low expression group had a poorer prognosis than those in the high expression group (median survival of 26.4 and 46.9 months, respectively). Univariate and multivariate analysis demonstrated that low miR-376a expression was an independent prognostic marker for poor survival. Functional enrichment analysis indicated that the common targets genes were involved in cell–cell communication, VEGF and mTOR1-mediated signaling, and epithelial-to-mesenchymal transition (EMT). Conclusion: The results suggest that miR-376a could play an important role in the tumorigenesis and progression of GC and act as a novel therapeutic target and prognostic indicator in patients with GC

    Suggestions on the development strategy of shale gas in China

    Get PDF
    AbstractFrom the aspects of shale gas resource condition, main exploration and development progress, important breakthrough in key technologies and equipment, this paper systematically summarized and analyzed current situation of shale gas development in China and pointed out five big challenges such as misunderstandings, lower implementation degree and higher economic uncertainty of shale gas resource, and still no breakthrough in exploration and development core technologies and equipment for shale gas buried depth more than 3500 m, higher cost and other non-technical factors that restrict the development pace. Aiming at the above challenges, we put forward five suggestions to promote the shale gas development in China: (1) Make strategies and set goals according to our national conditions and exploration and development stages. That is, make sure to realize shale gas annual production of 20 × 109 m3, and strives to reach 30 × 109 m3. (2) Attach importance to the research of accumulation and enrichment geological theory and exploration & development key engineering technologies for lower production and lower pressure marine shale gas reservoir, and at the same time orderly promote the construction of non-marine shale gas exploration & development demonstration areas. (3) The government should introduce further policies and set special innovation funds to support the companies to carry out research and development of related technologies and equipment, especially to strengthen the research and development of technology, equipment and process for shale gas bellow 3500 m in order to achieve breakthrough in deep shale gas. (4) Continue to promote the geological theory, innovation in technology and management, and strengthen cost control on drilling, fracturing and the whole process in order to realize efficient, economic and scale development of China's shale gas. (5) Reform the mining rights management system, establish information platform of shale gas exploration and development data, and correctly guide the non-oil and gas companies to participate in shale gas exploration and development
    corecore