20,558 research outputs found

    Nanomechanical characterization of quantum interference in a topological insulator nanowire

    Get PDF
    The discovery of two-dimensional gapless Dirac fermions in graphene and topological insulators (TI) has sparked extensive ongoing research toward applications of their unique electronic properties. The gapless surface states in three-dimensional insulators indicate a distinct topological phase of matter with a non-trivial Z2 invariant that can be verified by angle-resolved photoemission spectroscopy or magnetoresistance quantum oscillation. In TI nanowires, the gapless surface states exhibit Aharonov-Bohm (AB) oscillations in conductance, with this quantum interference effect accompanying a change in the number of transverse one-dimensional modes in transport. Thus, while the density of states (DOS) of such nanowires is expected to show such AB oscillation, this effect has yet to be observed. Here, we adopt nanomechanical measurements that reveal AB oscillations in the DOS of a topological insulator. The TI nanowire under study is an electromechanical resonator embedded in an electrical circuit, and quantum capacitance effects from DOS oscillation modulate the circuit capacitance thereby altering the spring constant to generate mechanical resonant frequency shifts. Detection of the quantum capacitance effects from surface-state DOS is facilitated by the small effective capacitances and high quality factors of nanomechanical resonators, and as such the present technique could be extended to study diverse quantum materials at nanoscale.Comment: 15+16 pages, 4+11 figure

    Path integral Monte Carlo study of the interacting quantum double-well model: Quantum phase transition and phase diagram

    Full text link
    The discrete time path integral Monte Carlo (PIMC) with a one-particle density matrix approximation is applied to study the quantum phase transition in the coupled double-well chain. To improve the convergence properties, the exact action for a single particle in a double well potential is used to construct the many-particle action. The algorithm is applied to the interacting quantum double-well chain for which the zero-temperature phase diagram is determined. The quantum phase transition is studied via finite-size scaling and the critical exponents are shown to be compatible with the classical two-dimensional (2D) Ising universality class -- not only in the order-disorder limit (deep potential wells) but also in the displacive regime (shallow potential wells).Comment: 17 pages, 7 figures; Accepted for publication in Phys. Rev.

    Singlet Fermionic Dark Matter with Dark ZZ

    Full text link
    We present a fermionic dark matter model mediated by the hidden gauge boson. We assume the QED-like hidden sector which consists of a Dirac fermion and U(1)X_X gauge symmetry, and introduce an additional scalar electroweak doublet field with the U(1)X_X charge as a mediator. The hidden U(1)X_X symmetry is spontaneously broken by the electroweak symmetry breaking and there exists a massive extra neutral gauge boson in this model which is the mediator between the hidden and visible sectors. Due to the U(1)X_X charge, the additional scalar doublet does not couple to the Standard Model fermions, which leads to the Higgs sector of type I two Higgs doublet model. The new gauge boson couples to the Standard Model fermions with couplings proportional to those of the ordinary ZZ boson but very suppressed, thus we call it the dark ZZ boson. We study the phenomenology of the dark ZZ boson and the Higgs sector, and show the hidden fermion can be the dark matter candidate.Comment: 10 pages, 3 figure

    Quantum super-cavity with atomic mirrors

    Full text link
    We study single-photon transport in an array of coupled microcavities where two two-level atomic systems are embedded in two separate cavities of the array. We find that a single-photon can be totally reflected by a single two-level system. However, two separate two-level systems can also create, between them, single-photon quasi-bound states. Therefore, a single two-level system in the cavity array can act as a mirror while a different type of cavity can be formed by using two two-level systems, acting as tunable "mirrors", inside two separate cavities in the array. In analogy with superlattices in solid state, we call this new "cavity inside a coupled-cavity array" a super-cavity. This supercavity is the quantum analog of Fabry-Perot interferometers. Moreover, we show that the physical properties of this quantum super-cavity can be adjusted by changing the frequencies of these two-level systems.Comment: 13 pages, 9 figure

    catena-Poly[[bis­(2-hydr­oxy-2-phenyl­acetato-κ2 O 1,O 2)zinc(II)]-μ-1,2-di-4-pyridylethane-κ2 N:N′]

    Get PDF
    The title compound, [Zn(C8H6O3)2(C12H12N2)]n, consists of [Zn(Hopa)2] (H2opa = 2-hydr­oxy-2-phenyl­acetic acid or mandelic acid) units bridged by 1,2-di-4-pyridylethane (bpe) ligands, forming a polymeric chain developing parallel to the b axis. The bridging bpe ligand is arranged around a twofold axis passing through the middle of the ethane C—C bond. The geometry around the ZnII ion is distorted octa­hedral, constructed by four O atoms from two Hopa− ligands and two N atoms from two bridging bpe ligands. O—H⋯O hydrogen bonds link the chains, forming a three-dimensional network
    corecore