13,872 research outputs found
Impact of template backbone heterogeneity on RNA polymerase II transcription.
Variations in the sugar component (ribose or deoxyribose) and the nature of the phosphodiester linkage (3'-5' or 2'-5' orientation) have been a challenge for genetic information transfer from the very beginning of evolution. RNA polymerase II (pol II) governs the transcription of DNA into precursor mRNA in all eukaryotic cells. How pol II recognizes DNA template backbone (phosphodiester linkage and sugar) and whether it tolerates the backbone heterogeneity remain elusive. Such knowledge is not only important for elucidating the chemical basis of transcriptional fidelity but also provides new insights into molecular evolution. In this study, we systematically and quantitatively investigated pol II transcriptional behaviors through different template backbone variants. We revealed that pol II can well tolerate and bypass sugar heterogeneity sites at the template but stalls at phosphodiester linkage heterogeneity sites. The distinct impacts of these two backbone components on pol II transcription reveal the molecular basis of template recognition during pol II transcription and provide the evolutionary insight from the RNA world to the contemporary 'imperfect' DNA world. In addition, our results also reveal the transcriptional consequences from ribose-containing genomic DNA
Recommended from our members
Intensified anticyclonic anomaly over the western North Pacific during El Niño decaying summer under a weakened Atlantic thermohaline circulation
It has been well documented that there is an anticyclonic anomaly over the western North Pacific (WNPAC, hereafter) during El Niño decaying summer. This El Niño-WNPAC relationship is greatly useful for the seasonal prediction of summer climate in the WNP and East Asia. In this study, we investigate the modification of the El Niño-WNPAC relationship induced by a weakened Atlantic thermohaline circulation (THC) in a water-hosing experiment. The results suggest that the WNPAC during the El Niño decaying summer, as well as the associated precipitation anomaly over the WNP, is intensified under the weakened THC. On the one hand, this intensification is in response to the increased amplitude and frequency of El Niño events in the water-hosing experiment. On the other hand, this intensification is also because of greater climatological humidity over the western to central North Pacific under the weakened THC. We suggest that the increase of climatological humidity over the western to central North Pacific during summer under the weakened THC is favorable for enhanced interannual variability of precipitation, and therefore favorable for the intensification of the WNPAC during El Niño decaying summer. This study suggests a possible modulation of the El Niño–Southern Oscillation-WNP summer monsoon relationship by the low-frequency fluctuation of Atlantic sea surface temperature. The results offer an explanation for the observed modification of the multidecadal fluctuation of El Niño-WNPAC relationship by the Atlantic multidecadal oscillation
Ultrafast Relaxation Dynamics of Photoexcited Dirac Fermion in The Three Dimensional Dirac Semimetal Cadmium Arsenide
Three dimensional (3D) Dirac semimetals which can be seen as 3D analogues of
graphene have attracted enormous interests in research recently. In order to
apply these ultrahigh-mobility materials in future electronic/optoelectronic
devices, it is crucial to understand the relaxation dynamics of photoexcited
carriers and their coupling with lattice. In this work, we report ultrafast
transient reflection measurements of the photoexcited carrier dynamics in
cadmium arsenide (Cd3As2), which is one of the most stable Dirac semimetals
that have been confirmed experimentally. By using low energy probe photon of
0.3 eV, we probed the dynamics of the photoexcited carriers that are
Dirac-Fermi-like approaching the Dirac point. We systematically studied the
transient reflection on bulk and nanoplate samples that have different doping
intensities by tuning the probe wavelength, pump power and lattice temperature,
and find that the dynamical evolution of carrier distributions can be retrieved
qualitatively by using a two-temperature model. This result is very similar to
that of graphene, but the carrier cooling through the optical phonon couplings
is slower and lasts over larger electron temperature range because the optical
phonon energies in Cd3As2 are much lower than those in graphene
- …