4,578 research outputs found

    Acute hydrogen sulfide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research.

    Get PDF
    Hydrogen sulfide (H2 S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2 S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2 S is known to cause brain damage, leading to neurodegeneration and long-term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2 S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2 S concentrations. This review focuses on the neuropathology of high acute H2 S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2 S-induced neurodegeneration

    Recent Developments in Synthesis and Photocatalytic Applications of Carbon Dots

    Get PDF
    The tunable photoluminescent and photocatalytic properties of carbon dots (CDs) via chemical surface modification have drawn increased attention to this emerging class of carbon nanomaterials. Herein, we summarize the advances in CD synthesis and modification, with a focus on surface functionalization, element doping, passivation, and nanocomposite formation with metal oxides, transition metal chalcogenides, or graphitic carbon nitrides. The effects of CD size and functionalization on photocatalytic properties are discussed, along with the photocatalytic applications of CDs in energy conversion, water splitting, hydrogen evolution, water treatment, and chemical degradation. In particular, the enzyme-mimetic and photodynamic applications of CDs for bio-related uses are thoroughly reviewed

    Dietary Cholesterol Affects Lipid Metabolism in Rabbits

    Get PDF
    Effects of dietary cholesterol (0 (control), 1, 2, 4 or 8 g cholesterol/kg diet for 12 wks) on lipid contents and fatty acid compositions in red blood cell (RBC) membranes and plasma of rabbits and pathological changes and lipid oxidation in their livers were determined. Contents of total lipid and unsaturated fatty acids in RBC membrane and plasma of rabbits fed ≥4 g and ≥2 g dosages, respectively, were significantly higher (P \u3c 0.05) than those of the control, and their increases were dosage-dependent. Accumulations of neutral lipids in centrolobular regions of livers in rabbits fed ≥ 2 g were dosage-dependent. Lipid oxidation in liver of rabbits fed 8 g was \u3e2 times higher (P \u3c 0.05) than those fed lower dosages. The results indicated that dietary cholesterol can modify lipid metabolisms of rabbits, including biosynthesis and transportation of lipids and fatty acids and incorporation of fatty acid into RBC membranes

    Lymphoscintigraphy and triangulated body marking for morbidity reduction during sentinel node biopsy in breast cancer

    Get PDF
    Current trends in patient care include the desire for minimizing invasiveness of procedures and interventions. This aim is reflected in the increasing utilization of sentinel lymph node biopsy, which results in a lower level of morbidity in breast cancer staging, in comparison to extensive conventional axillary dissection. Optimized lymphoscintigraphy with triangulated body marking is a clinical option that can further reduce morbidity, more than when a hand held gamma probe alone is utilized. Unfortunately it is often either overlooked or not fully understood, and thus not utilized. This results in the unnecessary loss of an opportunity to further reduce morbidity. Optimized lymphoscintigraphy and triangulated body marking provides a detailed 3 dimensional map of the number and location of the sentinel nodes, available before the first incision is made. The number, location, relevance based on time/sequence of appearance of the nodes, all can influence 1) where the incision is made, 2) how extensive the dissection is, and 3) how many nodes are removed. In addition, complex patterns can arise from injections. These include prominent lymphatic channels, pseudo-sentinel nodes, echelon and reverse echelon nodes and even contamination, which are much more difficult to access with the probe only. With the detailed information provided by optimized lymphoscintigraphy and triangulated body marking, the surgeon can approach the axilla in a more enlightened fashion, in contrast to when the less informed probe only method is used. This allows for better planning, resulting in the best cosmetic effect and less trauma to the tissues, further reducing morbidity while maintaining adequate sampling of the sentinel node(s)

    Simultaneous VLBI Astrometry of H2O and SiO Masers toward the Semiregular Variable R Crateris

    Full text link
    We obtained, for the first time, astrometrically registered maps of the 22.2 GHz H2O and 42.8, 43.1, and 86.2 GHz SiO maser emission toward the semiregular b-type variable (SRb) R Crateris, at three epochs (2015 May 21, and 2016 January 7 and 26) using the Korean Very-long-baseline Interferometry Network. The SiO masers show a ring-like spatial structure, while the H2O maser shows a very asymmetric one-side outflow structure, which is located at the southern part of the ring-like SiO maser feature. We also found that the 86.2 GHz SiO maser spots are distributed in an inner region, compared to those of the 43.1 GHz SiO maser, which is different from all previously known distributions of the 86.2 GHz SiO masers in variable stars. The different distribution of the 86.2 GHz SiO maser seems to be related to the complex dynamics caused by the overtone pulsation mode of the SRb R Crateris. Furthermore, we estimated the position of the central star based on the ring fitting of the SiO masers, which is essential for interpreting the morphology and kinematics of a circumstellar envelope. The estimated stellar coordinate corresponds well to the position measured by Gaia

    Physical Origin and Generic Control of Magnonic Band Gaps of Dipole-Exchange Spin Waves in Width-Modulated-Nanostrip Waveguides

    Get PDF
    We report, for the first time, on a novel planar structure of magnonic-crystal waveguides, made of a single magnetic material, in which the allowed and forbidden bands of propagating dipole-exchange spin-waves can be manipulated by the periodic modulation of different widths in thin-film nanostrips. The origin of the presence of several magnonic wide band gaps and the crucial parameters for controlling those band gaps of the order of ~10 GHz are found by micromagnetic numerical and analytical calculations. This work can offer a route to the potential application to broad-band spin-wave filters in the GHz frequency range.Comment: 24 pages, 8 figure

    Midazolam Efficacy Against Acute Hydrogen Sulfide-Induced Mortality and Neurotoxicity.

    Get PDF
    Hydrogen sulfide (H2S) is a colorless, highly neurotoxic gas. It is not only an occupational and environmental hazard but also of concern to the Department of Homeland Security for potential nefarious use. Acute high-dose H2S exposure causes death, while survivors may develop neurological sequelae. Currently, there is no suitable antidote for treatment of acute H2S-induced neurotoxicity. Midazolam (MDZ), an anti-convulsant drug recommended for treatment of nerve agent intoxications, could also be of value in treating acute H2S intoxication. In this study, we tested the hypothesis that MDZ is effective in preventing/treating acute H2S-induced neurotoxicity. This proof-of-concept study had two objectives: to determine whether MDZ prevents/reduces H2S-induced mortality and to test whether MDZ prevents H2S-induced neurological sequelae. MDZ (4 mg/kg) was administered IM in mice, 5 min pre-exposure to a high concentration of H2S at 1000 ppm or 12 min post-exposure to 1000 ppm H2S followed by 30 min of continuous exposure. A separate experiment tested whether MDZ pre-treatment prevented neurological sequelae. Endpoints monitored included assessment of clinical signs, mortality, behavioral changes, and brain histopathological changes. MDZ significantly reduced H2S-induced lethality, seizures, knockdown, and behavioral deficits (p < 0.01). MDZ also significantly prevented H2S-induced neurological sequelae, including weight loss, behavior deficits, neuroinflammation, and histopathologic lesions (p < 0.01). Overall, our findings show that MDZ is a promising drug for reducing H2S-induced acute mortality, neurotoxicity, and neurological sequelae
    corecore