25,065 research outputs found

    Optical properties of 4 A single-walled carbon nanotubes inside the zeolite channels studied from first principles calculations

    Get PDF
    The structural, electronic, and optical properties of 4 A single-walled carbon nanotubes (SWNTs) contained inside the zeolite channels have been studied based upon the density-functional theory in the local-density approximation (LDA). Our calculated results indicate that the relaxed geometrical structures for the smallest SWNTs in the zeolite channels are much different from those of the ideal isolated SWNTs, producing a great effect on their physical properties. It is found that all three kinds of 4 A SWNTs can possibly exist inside the Zeolite channels. Especially, as an example, we have also studied the coupling effect between the ALPO_4-5 zeolite and the tube (5,0) inside it, and found that the zeolite has real effects on the electronic structure and optical properties of the inside (5,0) tube.Comment: 9 pages, 6figure

    End-to-End Learning of Video Super-Resolution with Motion Compensation

    Full text link
    Learning approaches have shown great success in the task of super-resolving an image given a low resolution input. Video super-resolution aims for exploiting additionally the information from multiple images. Typically, the images are related via optical flow and consecutive image warping. In this paper, we provide an end-to-end video super-resolution network that, in contrast to previous works, includes the estimation of optical flow in the overall network architecture. We analyze the usage of optical flow for video super-resolution and find that common off-the-shelf image warping does not allow video super-resolution to benefit much from optical flow. We rather propose an operation for motion compensation that performs warping from low to high resolution directly. We show that with this network configuration, video super-resolution can benefit from optical flow and we obtain state-of-the-art results on the popular test sets. We also show that the processing of whole images rather than independent patches is responsible for a large increase in accuracy.Comment: Accepted to GCPR201

    MIT Domainia

    Get PDF
    The AAA ATPase Vps4 disassembles the membrane-bound ESCRT-III lattice. Four recent publications show how Vps4 carries out this task in a partnership with another ESCRT-associated protein, Vta1. Vps4 and Vta1 both contain MIT domains, which bind to “MIT-interacting motifs” (MIMs) of ESCRT-III proteins. As new MIT domain proteins are rapidly being identified, these studies will likely have relevance well beyond Vps4

    SPG20 protein spartin is recruited to midbodies by ESCRT-III protein Ist1 and participates in cytokinesis.

    Get PDF
    Hereditary spastic paraplegias (HSPs, SPG1-46) are inherited neurological disorders characterized by lower extremity spastic weakness. Loss-of-function SPG20 gene mutations cause an autosomal recessive HSP known as Troyer syndrome. The SPG20 protein spartin localizes to lipid droplets and endosomes, and it interacts with tail interacting protein 47 (TIP47) as well as the ubiquitin E3 ligases atrophin-1-interacting protein (AIP)4 and AIP5. Spartin harbors a domain contained within microtubule-interacting and trafficking molecules (MIT) at its N-terminus, and most proteins with MIT domains interact with specific ESCRT-III proteins. Using yeast two-hybrid and in vitro surface plasmon resonance assays, we demonstrate that the spartin MIT domain binds with micromolar affinity to the endosomal sorting complex required for transport (ESCRT)-III protein increased sodium tolerance (Ist)1 but not to ESCRT-III proteins charged multivesicular body proteins 1-7. Spartin colocalizes with Ist1 at the midbody, and depletion of Ist1 in cells by small interfering RNA significantly decreases the number of cells where spartin is present at midbodies. Depletion of spartin does not affect Ist1 localization to midbodies but markedly impairs cytokinesis. A structure-based amino acid substitution in the spartin MIT domain (F24D) blocks the spartin-Ist1 interaction. Spartin F24D does not localize to the midbody and acts in a dominant-negative manner to impair cytokinesis. These data suggest that Ist1 interaction is important for spartin recruitment to the midbody and that spartin participates in cytokinesis

    Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau

    Get PDF
    Little is known about decadal- to centennial-scale climate variability and its associated forcing mechanisms on the Qinghai-Tibetan Plateau. A decadal-resolution record of total organic carbon (TOC) and grainsize retrieved from a composite piston core from Kusai Lake, NW China, provides solid evidence for decadal- to centennial-scale Asian monsoon variability for the Northern Qinghai-Tibetan Plateau during the last 3770 yr. Intensified winter and summer monsoons are well correlated with respective reductions and increases in solar irradiance. A number of intensified Asian winter monsoon phases are potentially correlated with North Atlantic climatic variations including Bond events 0 to 2 and more recent subtle climate changes from the Medieval Warm Period to the Little Ice Age. Our findings indicate that Asian monsoon changes during the late Holocene are forced by changes in both solar output and oceanic-atmospheric circulation patterns. Our results demonstrate that these forcing mechanisms operate not only in low latitudes but also in mid-latitude regions (the Northern Qinghai-Tibetan Plateau)
    corecore