351 research outputs found

    Effect of losartan potassium tablets combined with Bailing capsules on rats with chronic kidney disease

    Get PDF
    Purpose: To study the combined therapeutic effect of losartan potassium tablets and Bailing capsules in rats with chronic kidney disease (CKD) via PI3K/Akt/NF-κB pathway. Methods: Sixty Sprague Dawley (SD) rats were randomized into blank (BG), model (MG) and study groups (OG), with 20 rats in each group. The CKD model was established in MG and OG through oral gavage of adenine. The OG was administered losartan potassium tablets combined with Bailing capsules, while BG and MG were administered saline. After 6 weeks of continuous administration, BUN, Scr, UAlb, TNF-α, IL-1β and IL-6 were assessed. Protein expression and changes in the mRNA of PI3K, Akt and NF-κB were determined. Results: The BUN, Scr and UAlb, as well as IL-1β, IL-6 and TNF-α levels were highest in MG, followed by OG, and lowest in BG (p < 0.05). PI3K and Akt proteins were lowest in MG, followed by OG, and highest in BG, whereas NF-κB protein was highest in MG, followed by OG, and lowest in BG (p < 0.05). PI3K mRNA and Akt mRNA levels were lowest in MG, followed by OG, and highest in BG, while NF-κB mRNA was highest in MG, followed by OG, and lowest in BG (p < 0.05). Conclusion: The combination of losartan potassium tablets and Bailing capsules are effective in treating CKD in rats, and improves the renal function of rats. Thse effects may be related to the down-regulation of PI3K/Akt/NF-κB signaling pathway

    The machine abnormal degree detection method based on SVDD and negative selection mechanism

    Get PDF
    As is well-known, fault samples are essential for the fault diagnosis and anomaly detection, but in most cases, it is difficult to obtain them. The negative selection mechanism of immune system, which can distinguish almost all nonself cells or molecules with only the self cells, gives us an inspiration to solve the problem of anomaly detection with only the normal samples. In this paper, we introduced the Support Vector Data Description (SVDD) and negative selection mechanism to separate the state space of machines into self, non-self and fault space. To estimate the abnormal level of machines, a function that could calculate the abnormal degree was constructed and its sensitivity change according to the change of abnormal degree was also discussed. At last, Iris-Fisher and ball bearing fault data set were used to verify the effectiveness of this method

    Less is More: Focus Attention for Efficient DETR

    Full text link
    DETR-like models have significantly boosted the performance of detectors and even outperformed classical convolutional models. However, all tokens are treated equally without discrimination brings a redundant computational burden in the traditional encoder structure. The recent sparsification strategies exploit a subset of informative tokens to reduce attention complexity maintaining performance through the sparse encoder. But these methods tend to rely on unreliable model statistics. Moreover, simply reducing the token population hinders the detection performance to a large extent, limiting the application of these sparse models. We propose Focus-DETR, which focuses attention on more informative tokens for a better trade-off between computation efficiency and model accuracy. Specifically, we reconstruct the encoder with dual attention, which includes a token scoring mechanism that considers both localization and category semantic information of the objects from multi-scale feature maps. We efficiently abandon the background queries and enhance the semantic interaction of the fine-grained object queries based on the scores. Compared with the state-of-the-art sparse DETR-like detectors under the same setting, our Focus-DETR gets comparable complexity while achieving 50.4AP (+2.2) on COCO. The code is available at https://github.com/huawei-noah/noah-research/tree/master/Focus-DETR and https://gitee.com/mindspore/models/tree/master/research/cv/Focus-DETR.Comment: 8 pages, 6 figures, accepted to ICCV202

    Scale-aware Test-time Click Adaptation for Pulmonary Nodule and Mass Segmentation

    Full text link
    Pulmonary nodules and masses are crucial imaging features in lung cancer screening that require careful management in clinical diagnosis. Despite the success of deep learning-based medical image segmentation, the robust performance on various sizes of lesions of nodule and mass is still challenging. In this paper, we propose a multi-scale neural network with scale-aware test-time adaptation to address this challenge. Specifically, we introduce an adaptive Scale-aware Test-time Click Adaptation method based on effortlessly obtainable lesion clicks as test-time cues to enhance segmentation performance, particularly for large lesions. The proposed method can be seamlessly integrated into existing networks. Extensive experiments on both open-source and in-house datasets consistently demonstrate the effectiveness of the proposed method over some CNN and Transformer-based segmentation methods. Our code is available at https://github.com/SplinterLi/SaTTCAComment: 11 pages, 3 figures, MICCAI 202

    Kosmos-2: Grounding Multimodal Large Language Models to the World

    Full text link
    We introduce Kosmos-2, a Multimodal Large Language Model (MLLM), enabling new capabilities of perceiving object descriptions (e.g., bounding boxes) and grounding text to the visual world. Specifically, we represent refer expressions as links in Markdown, i.e., ``[text span](bounding boxes)'', where object descriptions are sequences of location tokens. Together with multimodal corpora, we construct large-scale data of grounded image-text pairs (called GrIT) to train the model. In addition to the existing capabilities of MLLMs (e.g., perceiving general modalities, following instructions, and performing in-context learning), Kosmos-2 integrates the grounding capability into downstream applications. We evaluate Kosmos-2 on a wide range of tasks, including (i) multimodal grounding, such as referring expression comprehension, and phrase grounding, (ii) multimodal referring, such as referring expression generation, (iii) perception-language tasks, and (iv) language understanding and generation. This work lays out the foundation for the development of Embodiment AI and sheds light on the big convergence of language, multimodal perception, action, and world modeling, which is a key step toward artificial general intelligence. Data, demo, and pretrained models are available at https://aka.ms/kosmos-2.Comment: 20 page

    AlphaCrystal: Contact map based crystal structure prediction using deep learning

    Full text link
    Crystal structure prediction is one of the major unsolved problems in materials science. Traditionally, this problem is formulated as a global optimization problem for which global search algorithms are combined with first principle free energy calculations to predict the ground-state crystal structure given only a material composition or a chemical system. These ab initio algorithms usually cannot exploit a large amount of implicit physicochemical rules or geometric constraints (deep knowledge) of atom configurations embodied in a large number of known crystal structures. Inspired by the deep learning enabled breakthrough in protein structure prediction, herein we propose AlphaCrystal, a crystal structure prediction algorithm that combines a deep residual neural network model that learns deep knowledge to guide predicting the atomic contact map of a target crystal material followed by reconstructing its 3D crystal structure using genetic algorithms. Based on the experiments of a selected set of benchmark crystal materials, we show that our AlphaCrystal algorithm can predict structures close to the ground truth structures. It can also speed up the crystal structure prediction process by predicting and exploiting the predicted contact map so that it has the potential to handle relatively large systems. We believe that our deep learning based ab initio crystal structure prediction method that learns from existing material structures can be used to scale up current crystal structure prediction practice. To our knowledge, AlphaCrystal is the first neural network based algorithm for crystal structure contact map prediction and the first method for directly reconstructing crystal structures from materials composition, which can be further optimized by DFT calculations.Comment: 13 pages; 5 figure

    Mlatticeabc: Generic Lattice Constant Prediction of Crystal Materials Using Machine Learning

    Get PDF
    Lattice constants such as unit cell edge lengths and plane angles are important parameters of the periodic structures of crystal materials. Predicting crystal lattice constants has wide applications in crystal structure prediction and materials property prediction. Previous work has used machine learning models such as neural networks and support vector machines combined with composition features for lattice constant prediction and has achieved a maximum performance for cubic structures with an average coefficient of determination (R2) of 0.82. Other models tailored for special materials family of a fixed form such as ABX3 perovskites can achieve much higher performance due to the homogeneity of the structures. However, these models trained with small data sets are usually not applicable to generic lattice parameter prediction of materials with diverse compositions. Herein, we report MLatticeABC, a random forest machine learning model with a new descriptor set for lattice unit cell edge length (a, b, c) prediction which achieves an R2 score of 0.973 for lattice parameter a of cubic crystals with an average R2 score of 0.80 for a prediction of all crystal systems. The R2 scores are between 0.498 and 0.757 over lattice b and c prediction performance of the model, which could be used by just inputting the molecular formula of the crystal material to get the lattice constants. Our results also show significant performance improvement for lattice angle predictions. Source code and trained models can be freely accessed at https://github.com/usccolumbia/MLatticeABC
    corecore