66 research outputs found

    A Hybrid Labeled Multi-Bernoulli Filter With Amplitude For Tracking Fluctuating Targets

    Full text link
    The amplitude information of target returns has been incorporated into many tracking algorithms for performance improvements. One of the limitations of employing amplitude feature is that the signal-to-noise ratio (SNR) of the target, i.e., the parameter of amplitude likelihood, is usually assumed to be known and constant. In practice, the target SNR is always unknown, and is dependent on aspect angle hence it will fluctuate. In this paper we propose a hybrid labeled multi-Bernoulli (LMB) filter that introduces the signal amplitude into the LMB filter for tracking targets with unknown and fluctuating SNR. The fluctuation of target SNR is modeled by an autoregressive gamma process and amplitude likelihoods for Swerling 1 and 3 targets are considered. Under Rao-Blackwell decomposition, an approximate Gamma estimator based on Laplace transform and Markov Chain Monte Carlo method is proposed to estimate the target SNR, and the kinematic state is estimated by a Gaussian mixture filter conditioned on the target SNR. The performance of the proposed hybrid filter is analyzed via a tracking scenario including three crossing targets. Simulation results verify the efficacy of the proposed SNR estimator and quantify the benefits of incorporating amplitude information for multi-target tracking

    L-carnitine ameliorated fatty liver in high-calorie diet/STZ-induced type 2 diabetic mice by improving mitochondrial function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are an increasing number of patients suffering from fatty liver caused by type 2 diabetes. We intended to study the preventive and therapeutic effect of L-carnitine (LC) on nonalcoholic fatty liver disease (NAFLD) in streptozotocin (STZ)-induced type 2 diabetic mice and to explore its possible mechanism.</p> <p>Methods</p> <p>Thirty male Kungming mice were randomly divided into five groups: control group, diabetic group, pre-treatment group (125 mg/kg BW), low-dose (125 mg/kg BW) therapeutic group and high-dose (250 mg/kg BW) therapeutic group. The morphology of hepatocytes was observed by light and electron microscopy. LC and ALC (acetyl L-carnitine) concentrations in the liver were determined by high-performance liquid chromatography (HPLC). Moreover, liver weight, insulin levels and free fatty acid (FFA) and triglyceride (TG) levels in the liver and plasma were measured.</p> <p>Results</p> <p>Average liver LC and ALC levels were 33.7% and 20% lower, respectively, in diabetic mice compared to control mice (P < 0.05). After preventive and therapeutic treatment with LC, less hepatocyte steatosis, clearer crista and fewer glycogen granules in the mitochondria were observed. Decreased liver weight, TG levels, and FFA concentrations (P < 0.05) in the liver were also observed after treatment with LC in diabetic mice. Moreover, liver LC and ALC levels increased upon treatment with LC, whereas the ratio of LC and ALC decreased significantly (P < 0.01).</p> <p>Conclusion</p> <p>LC supplements ameliorated fatty liver in type 2 diabetic mice by increasing fatty acid oxidation and decreasing the LC/ALC ratio in the liver. Therefore, oral administration of LC protected mitochondrial function in liver.</p

    Reducing Objectification Could Tackle Stigma in the COVID-19 Pandemic: Evidence from China

    Get PDF
    Stigmatization associated with the coronavirus disease 2019 (COVID-19) is expected to be a complex issue and to extend into the later phases of the pandemic, which impairs social cohesion and relevant individuals\u27 well-being. Identifying contributing factors and learning their roles in the stigmatization process may help tackle the problem. This study quantitatively assessed the severity of stigmatization against three different groups of people: people from major COVID-19 outbreak sites, those who had been quarantined, and healthcare workers; explored the factors associated with stigmatization within the frameworks of self-categorization theory and core social motives; and proposed solutions to resolve stigma. The cross-sectional online survey was carried out between April 21 and May 7, 2020, using a convenience sample, which yielded 1,388 valid responses. Employing data analysis methods like multivariate linear regression and moderation analysis, this study yields some main findings: (1) those from major COVID-19 outbreak sites received the highest level of stigma; (2) factors most closely associated with stigmatization, in descending order, are objectification and epidemic proximity in an autonomic aspect and fear of contracting COVID-19 in a controllable aspect; and (3) superordinate categorization is a buffering moderator in objectification-stigmatization relationship. These findings are important for further understanding COVID-19-related stigma, and they can be utilized to develop strategies to fight against relevant discrimination and bias. Specifically, reinforcing superordinate categorization by cultivating common in-group identity, such as volunteering and donating for containment of the pandemic, could reduce objectification and, thus, alleviate stigma

    Enhanced lower-limb motor imagery by kinesthetic illusion

    Get PDF
    Brain-computer interface (BCI) based on lower-limb motor imagery (LMI) enables hemiplegic patients to stand and walk independently. However, LMI ability is usually poor for BCI-illiterate (e.g., some stroke patients), limiting BCI performance. This study proposed a novel LMI-BCI paradigm with kinesthetic illusion(KI) induced by vibratory stimulation on Achilles tendon to enhance LMI ability. Sixteen healthy subjects were recruited to carry out two research contents: (1) To verify the feasibility of induced KI by vibrating Achilles tendon and analyze the EEG features produced by KI, research 1 compared the subjective feeling and brain activity of participants during rest task with and without vibratory stimulation (V-rest, rest). (2) Research 2 compared the LMI-BCI performance with and without KI (KI-LMI, no-LMI) to explore whether KI enhances LMI ability. The analysis methods of both experiments included classification accuracy (V-rest vs. rest, no-LMI vs. rest, KI-LMI vs. rest, KI-LMI vs. V-rest), time-domain features, oral questionnaire, statistic analysis and brain functional connectivity analysis. Research 1 verified that induced KI by vibrating Achilles tendon might be feasible, and provided a theoretical basis for applying KI to LMI-BCI paradigm, evidenced by oral questionnaire (Q1) and the independent effect of vibratory stimulation during rest task. The results of research 2 that KI enhanced mesial cortex activation and induced more intensive EEG features, evidenced by ERD power, topographical distribution, oral questionnaire (Q2 and Q3), and brain functional connectivity map. Additionally, the KI increased the offline accuracy of no-LMI/rest task by 6.88 to 82.19% (p &lt; 0.001). The simulated online accuracy was also improved for most subjects (average accuracy for all subjects: 77.23% &gt; 75.31%, and average F1_score for all subjects: 76.4% &gt; 74.3%). The LMI-BCI paradigm of this study provides a novel approach to enhance LMI ability and accelerates the practical applications of the LMI-BCI system

    Compassion, Discrimination, and Prosocial Behaviors: Young Diasporic Chinese During the COVID-19 Pandemic

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has fueled anti-Asian, especially anti-Chinese sentiments worldwide, which may negatively impact diasporic Chinese youths\u27 adjustment and prosocial development. This study examined the association between compassion, discrimination and prosocial behaviors in diasporic Chinese youths during the COVID-19 pandemic. 360 participants participated and completed the multi-country, cross-sectional, web-based survey between April 22 and May 9, 2020, the escalating stage of the pandemic. This study found compassion as prosocial behaviors\u27 proximal predictor, while discrimination independently predicted participation in volunteering, and could potentially enhance the association between compassion and charitable giving. These findings suggest that prosociality among young people is sensitive to social context, and that racial discrimination should be considered in future prosocial studies involving young members of ethnic and racial minorities

    Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks

    Get PDF
    This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control based on approximate dynamic programming (ADP). Special characteristics of the proposed ANN control include: 1) The inputs to the ANN contain error signals and integrals of the error signals, enabling the ANN to have PI control ability; 2) The ANN receives voltage feedback signals from the dc/dc converter, making the combined system equivalent to a recurrent neural network; 3) The ANN is trained to minimize a cost function over a long time horizon, making the ANN have a stronger predictive control ability than a conventional predictive controller; 4) The ANN is trained offline, preventing the instability of the network caused by weight adjustments of an on-line training algorithm. The ANN performance is evaluated through simulation and hardware experiments and compared with conventional control methods, which shows that the ANN controller has a strong ability to track rapidly changing reference commands, maintain stable output voltage for a variable load, and manage maximum duty-ratio and current constraints properly

    An Iterative Optimization and Learning-based IoT System for Energy Management of Connected Buildings

    Get PDF
    Buildings account for nearly 40% of primary energy and 36% of greenhouse emissions, which is one of the main factors driving climate change. Reducing energy consumption in buildings toward zero-energy buildings is a vital pillar to ensure that future climate and energy targets are reached. However, due to the high uncertainty of building loads and customer comfort demands, and extremely nonlinear building thermal characteristics, developing an effective zero-energy building energy management (BEM) technology is facing great challenges. This paper proposes a novel learning-based and iterative IoT system to address these challenges to achieve the zero-energy objective in BEM of connected buildings. Firstly, all buildings in the IoT-based BEM system share their operation data with an aggregator. Secondly, the aggregator uses these historical data to train a deep reinforcement learning model based on the Deep Deterministic Policy Gradient method. The learning model generates pre-cooling or pre-heating control actions to achieve zero-energy BEM for building heating ventilation and air conditioning (HVAC) systems. Thirdly, for solving the coupling problem between HVAC systems and building internal heat gain loads, an iterative optimization algorithm is developed to integrate physics-based and learning-based models to minimize the deviation between the on-site solar photovoltaic generated energy and the actual building energy consumption by properly scheduling building loads, electric vehicle charging cycles and the energy-storage system. Lastly, the optimal load operation scheduling is generated by considering customers’ comfort requirements. All connected buildings then operate their loads based on the load operation schedule issued by the aggregator. The proposed learning-based and iterative IoT system is validated via simulation with real-world building data from the Pecan Street project

    Neuropeptide Y-Positive Neurons in the Dorsomedial Hypothalamus Are Involved in the Anorexic Effect of Angptl8

    Get PDF
    Angiopoietin-like protein 8 (Angptl8), a recently identified member of the angiopoietin-like protein family (ANGPTLs), is a 22-kDa peptide synthesized in the liver. It participates in lipid metabolism by inhibiting lipoprotein lipase (LPL) activity, consequently increasing the triglyceride levels. Despite evidence that Angptl8 is involved in feeding control, the underlying mechanisms are unclear. Central and peripheral injections of Angptl8 significantly decreased food intake. Angptl8 was widely expressed in appetite-related nuclei, including the paraventricular nucleus (PVN), the dorsomedial hypothalamus (DMH), the ventromedial hypothalamus, and the arcuate nucleus (ARC) in the hypothalamus. Peripheral Angptl8 administration decreased c-Fos-positive neurons in the DMH. Central Angptl8 administration decreased c-Fos-positive neurons in the DMH and PVN but increased these neurons in the ARC. Angptl8 inhibited appetite via neuropeptide Y (NPY) neurons in the DMH. Furthermore, the chronic administration of Angptl8 decreased body weight gain and altered adipose tissue deposits. Nevertheless, neither peripheral nor central Angptl8 influenced the brown adipose tissue (BAT) morphology or uncoupling protein 1 (Ucp-1) expression in BAT. Taken together, these data suggested that Angptl8 modulates appetite and energy homeostasis
    corecore