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Brain-computer interface (BCI) based on lower-limb motor imagery (LMI) 
enables hemiplegic patients to stand and walk independently. However, LMI 
ability is usually poor for BCI-illiterate (e.g., some stroke patients), limiting BCI 
performance. This study proposed a novel LMI-BCI paradigm with kinesthetic 
illusion(KI) induced by vibratory stimulation on Achilles tendon to enhance 
LMI ability. Sixteen healthy subjects were recruited to carry out two research 
contents: (1) To verify the feasibility of induced KI by vibrating Achilles tendon 
and analyze the EEG features produced by KI, research 1 compared the subjective 
feeling and brain activity of participants during rest task with and without vibratory 
stimulation (V-rest, rest). (2) Research 2 compared the LMI-BCI performance with 
and without KI (KI-LMI, no-LMI) to explore whether KI enhances LMI ability. The 
analysis methods of both experiments included classification accuracy (V-rest 
vs. rest, no-LMI vs. rest, KI-LMI vs. rest, KI-LMI vs. V-rest), time-domain features, 
oral questionnaire, statistic analysis and brain functional connectivity analysis. 
Research 1 verified that induced KI by vibrating Achilles tendon might be feasible, 
and provided a theoretical basis for applying KI to LMI-BCI paradigm, evidenced by 
oral questionnaire (Q1) and the independent effect of vibratory stimulation during 
rest task. The results of research 2 that KI enhanced mesial cortex activation and 
induced more intensive EEG features, evidenced by ERD power, topographical 
distribution, oral questionnaire (Q2 and Q3), and brain functional connectivity 
map. Additionally, the KI increased the offline accuracy of no-LMI/rest task by 
6.88 to 82.19% (p < 0.001). The simulated online accuracy was also improved for 
most subjects (average accuracy for all subjects: 77.23% > 75.31%, and average F1_
score for all subjects: 76.4% > 74.3%). The LMI-BCI paradigm of this study provides 
a novel approach to enhance LMI ability and accelerates the practical applications 
of the LMI-BCI system.
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1. Introduction

Stroke disables or kills several million people each year (Beal, 2010; Katan and Luft, 2018). 
The disability, especially the lower limb hemiplegia, highly impacts the lives of individuals (Rea 
et al., 2014; Katan and Luft, 2018). Rehabilitation therapy is vital for helping the survivor regain 
as much use of his/her lower limbs as possible. Traditional therapy acts on the distal physical 
level to indirectly influence the brain’s neural system, such as physical therapy and occupational 
therapy (Belda-Lois et al., 2011). However, these indirect therapies usually have poor efficiency. 
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BCI directly detects and modulates brain activity (Abiri et al., 2019; 
Saha et al., 2021). There are two main BCI strategies to improve the 
lives of individuals among stroke patients, i.e., assistive BCI and 
rehabilitative BCI (Mane et al., 2020). In the last decade, rehabilitative 
BCI has emerged as one of the promising tools for lower-limb motor 
function restoration by adjusting neuronal plasticity in affected neural 
circuits (Mane et al., 2020; Romero-Laiseca et al., 2020; Bobrova et al., 
2021). In the field of BCI, a lower limb exoskeleton control system 
based on steady state visual evoked potentials (SSVEP) is an efficient 
BCI system, such as achieved accuracies of 91.3 ± 5.73% and an 
information transfer rate (ITR) of 32.9 ± 9.13 bits/min (Kwak et al., 
2015). However, recent study reviewed that the flickers used to encode 
the BCI command must be sufficiently intense to obtain a high-quality 
SSVEP, which will engage a relatively large portion of the visual 
resources. Moreover, such irritating visual stimuli are not only 
irrelevant to users’ subjective intent, but even disrupt users and make 
them feel uncomfortable. Therefore, even though this BCI system can 
work well to assist subjects with walking, its unnatural way of 
interaction is unacceptable to some users, which reduces its usefulness 
in practice (Xu et al., 2021).

LMI-BCI is a rehabilitative BCI and is natural. It detects the 
decrease/increase of power in the sensorimotor cortex to control 
external equipment and then reversely modulates brain activity by 
external equipment (Pfurtscheller and da Silva, 1999; Abiri et al., 2019; 
Zhang et al., 2021). Two types of MI can be distinguished: Kinesthetic 
Motor Imageries (KMI) and Visual Motor Imageries (VMI). A KMI 
can be described as the ability to imagine performing a movement 
without executing it, by imagining haptic sensations felt during the 
real movement (i.e., tactile, proprioceptive, and kinesthetic). In 
comparison, VMI represents a visualization of the corresponding 
movement incorporating the visual network (Rimbert et al., 2018; 
Yang et al., 2021). Nevertheless, there are three challenges for MI-BCI 
system: (1) EEG features is unstable in general; (2) It is difficult to 
detect lower-limb EEG features because the anatomical location of the 
lower-limb motor cortical area deep within the contralateral mesial 
cortex (Neuper and Pfurtscheller, 1996; Pfurtscheller et  al., 1997; 
Pfurtscheller and da Silva, 1999; Boord et al., 2010); (3) Brain injury 
often inhibits the LMI ability after stroke, making the detection of 
EEG features harder (Takeda et al., 2007; Meyer et al., 2016; Park et al., 
2016).To address the above challenges, several studies focused on 
enhancing LMI ability by Mirror Neuron system (MNS). MNS can 
transform visual sensory input of related behavior (e.g., Action 
Observation, AO) into one’s own brain impulse or motor output of 
behavior (Kohler et al., 2002; Rizzolatti and Sinigaglia, 2016; Tanaka, 
2021). Li et al. (2015) enhanced LMI ability in an imagining playing 
football task by Action Observation and demonstrated more 
distinctive features in LMI with AO than without. As a kind of action 
observation, virtual reality (VR) plays an essential role in enhancing 
neural activity during motor imagery. These studies suggest that the 
use of immersive virtual reality headsets, with the illusion and 
embodiment they provide, can effectively improve motor imagery 
training and BCI performance (Choi et al., 2020; Ferrero et al., 2021). 
In the field of lower-limb rehabilitation, standing and sitting are two 
regular movements. The experimental results of Triana-Guzman et al. 
indicated that the classification of motor imagery and idle state 
provided a mean accuracy of 88.51 ± 1.43% and 85.29 ± 1.83% for the 
sit-to-stand and stand-to-sit transitions, respectively (Triana-Guzman 
et al., 2022). Additionally, Chaisaen et al. (2020) classified the AO/MI 

of sit-to-stand/stand-to-sit task, and the highest mean accuracy is 
82.73 ± 2.54%.

In 2021, a latest study revealed that mimicking known biological 
control principles results in BCI performance that is closer to healthy 
human abilities (Flesher et al., 2021). Brain-muscle-kinesthesis loop 
is the known biological control principle (Daly and Wolpaw, 2008). 
Hemiplegia inhibits kinesthesis after stroke(De Vries and Mulder, 
2007; Mane et al., 2020). kinesthetic illusion will complement the 
relevant loop. Neuroimaging studies have revealed that a relationship 
exists between the movement that has been imagined and the 
activation patterns of somatotopically organized motor and kinesthetic 
areas (Giannopulu and Mizutani, 2021). In the upper-limb MI-BCI 
study, KI induced by rubber hand can significantly amplify EEG 
features and provide better guidance to enhance upper-limb MI (Song 
and Kim, 2019). No previous study has investigated enhancing 
LMI-BCI performance by KI, although KI has important effects on 
BCI. This paper proposed an enhanced LMI paradigm by 
KI. Specifically, earlier studies proved that kinesthetic illusion where 
one feels muscle stretch could be induced by artificially vibrating the 
muscle spindle and tendon (Goodwin et al., 1972; Naito and Ehrsson, 
2001; Naito, 2004; Tapin et al., 2021). Therefore, we induced KI by 
vibratory stimulation on Achilles tendon to enhance LMI ability 
during imagining kicking a football. We  designed both research 
contents. The first research verified the feasibility of induced KI by 
vibratory stimulation and compared the brain activity during V-rest 
and rest task. The second research explored the effect of KI on LMI by 
comparing the LMI with and without KI (KI-LMI vs. no-LMI).

The rest of this paper is organized as follows. The experimental 
description and analysis methods are introduced in Section 2. Then, 
results are illustrated in Section 3 in terms of EEG analysis and BCI 
performance. Finally, discussion and conclusion are presented in 
Sections 4 and 5, respectively.

2. Materials and methods

2.1. Participants

Sixteen healthy subjects without a history of any neurological 
diseases (Subject H1-H16, all right-handed, age: 25 ± 2.98 years) 
participated in this study. Participants were asked to sleep normally 
and refrain from alcohol, caffeine and stimulant foods for 24 h 
before the experiment. All subjects were informed about the 
experimental process and required to sign an approved informed 
consent form before participating. This study was approved by the 
Ethics Committee of Xi’an Jiaotong University (Approval No. 
2021–1,577).

2.2. Required equipment

Previous researches have revealed that activated cortex area 
(i.e., contralateral primary motor cortex) by KI was similar to the 
activated cortex area by MI (Naito, 2004; Lopez et  al., 2017; 
Giannopulu and Mizutani, 2021). Therefore, EEG signal was 
recorded using 16-channel active electrodes placed over the 
sensorimotor cortex (Detailed locations are illustrated in 
Figure  1E), with the g.USBamp (g.tec Inc., Austria)  
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system (See Figure 1D for the composition structure) according to 
the 10–10 electrode location system  
(Jurcak et  al., 2007). The reference electrode and the ground 
electrode were placed on A1 and A2, with the sampling rate of 
1,200 Hz. To reduce artifacts and power line interference, 
impedances for all electrodes were kept below 5 KΩ. Meanwhile, an 
online band-pass filter between 0 and 60 Hz and a notch filter 
between 48 and 52 Hz were applied on the raw EEG. During the 
task, subjects were sat in a comfortable chair with feet resting on the 
floor in front of the monitor as shown in Figure 1A.

In terms of visual induction, the Psychtoolbox-3 toolbox is 
utilized to design a visual induction interface (i.e., Figure 1C). In the 
aspect of inducing illusion device, the microcontroller (STM32F4) 
sends Pulse Width Modulation (PWM) regulation signals to a 
vibration regulation module, and then the eccentric vibrator 
(RswTech-motor-0827) generates specified frequency. Detailed 
structure is shown in Figure 1B. The vibration stimulation device in 
this study has a vibration frequency of 180 Hz under rated voltage. 
Additionally, Pacinian corpuscles in the mechanical receptor of 
human skin are sensitive to above 100 Hz frequency (Breitwieser et al., 
2012). Therefore, a vibration frequency of 180 Hz was selected for 
experimental investigation in this study.

2.3. Data acquisition

Before the experiment, subjects were told to perform the LMI 
task of right limb. In addition, A inducing Illusion device was 

placed at the right Achilles tendon to induce kinesthetic illusion in 
right limb (see Figure  1A). Before the EEG acquisition, each 
participant needs to undergo 5 min training session by motor 
execution to become familiar with the experimental task. In this 
study, the pre-training method was used to make the subjects better 
actively to complete the LMI task. During the data acquisition, all 
subjects were required to avoid actual movements for collecting 
high-quality EEG data. All trials for participants were completed in 
1 day to reduce the EEG variability in different time periods. This 
study collected EEG data under four different conditions. Detailed 
paradigms flow is described in Figure 2: At the beginning (t = −3 - 
-1 s) of each trial, a white cross was displayed on the center of the 
screen to remind subjects to stay focused. Subsequently, a text cue 
(rest, V-rest, no-LMI, or KI-LMI) appeared for 1 s. When ‘V-rest or 
rest’ is observed, only the black background was shown to the 
subject who was executing rest task with or without vibratory 
stimulation synchronously (i.e., t = 0–3.5 s). When ‘KI- LMI or 
no-LMI’ is observed, the designed visual guidance of kicking a 
football was shown to the subject who was executing LMI task with 
or without vibratory stimulation synchronously (i.e., t = 0–3.5 s). 
There was a 4 s relaxation at the end of each trial. According to the 
random text cue, each subject randomly implemented the rest/LMI 
task (see Figure 2) in order to exclude the effect of task order on the 
results. In order to reduce the fatigue of the subjects, this study take 
a 3 min break after each run. Each subject performed a total of 12 
runs, and each run consisted of 8 trials for rest task and 8 trials for 
LMI task. Thus, a total of 192 trials (i.e., 8 × 2 × 12 = 192) were 
performed by each subject.

FIGURE 1

The experimental framework of enhanced LMI by KI. (A) Experiment condition, i.e., subjects were seated in a comfortable chair with feet resting on the 
floor in front of the monitor. (B) A inducing Illusion device. Kinesthetic illusion was induced by artificially vibrating the Achilles tendon. (C) Visually 
induced interative interface. (D) EEG acquisition equipment. (E) Detailed channel locations are placed in the sensorimotor cortex (i.e., blue marked 
area).
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2.4. Research contents architecture

These collected data was applied to explore two research contents:
Research 1: This research aims to verify the feasibility of induced 

KI by vibrating Achilles tendon and analyze the EEG features 
produced by KI. Its process is as follows: (1) Oral questionnaire 
(Question1: Do you feel your feet moving during V-rest?) (2) The 
topographical distribution of rest and V-rest were compared to explore 
the independent effect of KI on cerebral cortex. (3) The EEG data of 
rest and V-rest were classified to quantify the independent effect of KI 
on rest task.

Research 2: This research aims to explore whether KI enhances 
LMI. Its process is as follows: (1) Topographical distribution, brain 
functional connectivity map and the ERD of Cz electrode (Cz-ERD) 
were analyzed during no-LMI and KI-LMI task. (2) The EEG data of 
rest and no-LMI/KI-LMI task were classified to explore the effect of 
KI on enhancing LMI. (3) Oral questionnaire (Question 2: Is KI 
conducive to focusing on LMI? Question 3: Which LMI do 
you prefer?) (4) Statistical test of C3/C4-ERD power explored whether 
KI conducive to distinguishing between left and right LMI.

2.5. Data analysis methods

2.5.1. Event related desynchronization analysis
This study selected 1 s EEG data as the baseline from the cross 

period (i.e., tbase = −2.5 ~ −1.5 s, see Figure 2), since the subjects were 
in the most relaxed state (i.e., the signal was the most stable) during 
tbase. Additionally, it selected 3 s EEG data as the task segment from 
the task period (i.e., t task = 0.5 ~ 3.5 s), since severe artifacts were 
found within 0 ~ 0.5 s. And, EEG data of the task period was used for 
preprocessing, feature extraction, and task classification. In order to 
enhance the quality of EEG data, all trials were visually inspected to 
remove data with more artifacts. The following exclusion criteria were 
applied to identify and discard noisy trials: (1) Maximum peak-to-
peak value greater than 200 μV; (2) the subject is blinking, the 
electrodes are not making good contact with the scalp, or there are 
some muscle artifacts (Delijorge et al., 2020; Triana-Guzman et al., 
2022). Finally, any epoch where at least one electrode met these 
criteria was visually inspected to rule out noise-contaminated trials 
and labeled as an “artifact” manually.

Fourty trails of each task were randomly selected from the 
remaining data for each subjects. Event Related Desynchronization 

(ERD) is caused the decrease of EEG frequency power in alpha 
(8-13 Hz) and beta (14-30 Hz) bands on the motor area related to the 
body parts by preparing movement. In contrast, Event Related 
Synchronization (ERS) is caused the increase of EEG frequency power 
in a similar way and bands (Machida and Tanaka, 2018). ERD power 
is one of the most common time-domain analysis methods for 
studying cerebral cortex activity during motor imagery. Therefore, 
we calculated the instantaneous power within a 0.25 s moving time 
window to describe the ERD change in the time domain (Phon-
Amnuaisuk, 2008; Nakayashiki et  al., 2014). In previous study 
(Pfurtscheller and da Silva, 1999; Graimann et al., 2002; Hashimoto 
and Ushiba, 2013), the classical method to compute the time course 
of ERD includes the following steps: (1) bandpass filtering of all event-
related trials; (2) squaring of the amplitude samples to obtain power 
samples; (3) averaging of power samples across all trials; (4) averaging 
over time samples to smooth the data and reduce the variability. 
Similarly, the method is illustrated by equations (1–4) and applied to 
our research.
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Where, Pt  represents the instantaneous EEG power; Pbase and 
Ptask represent the average power during the period of Tbase and Ttask ,  
respectively; ERD t( ) represents instantaneous ERD; ERD represents 
the average ERD of the task segment. Optimal time period of motor 
imagery were different due to the variability among subjects or trials. 
Furthermore, the ERD of each channel was used to draw topographical 
distribution and execute statistical test.

FIGURE 2

Overview of the different task paradigms. The process included four different tasks, i.e., rest, V-rest, noLMI or KI-LMI.

https://doi.org/10.3389/fnins.2023.1077479
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1077479

Frontiers in Neuroscience 05 frontiersin.org

2.5.2. Functional connectivity analysis
To compare the patterns of two LMI tasks, we analyzed brain 

connectivity using the imaginary part of coherence (iCOH) algorithm. 
This algorithm is insensitive to artefactual caused by volume 
conduction, because a signal is not time-lagged to itself and thus 
manages to identify the synchronizations of two signals that are time-
lagged (Nolte et al., 2004; Pezoulas et al., 2018). It is defined as:

 iCOH imagin R fx y= ( )( ),  (5)

where Rx y, f( ) is the coherence of signals x, y, at f. Coherence is 
defined as the absolute value of coherency. The latter measures the 
linear relationship of the two signals at f. In fact, coherence acts as a 
generalization of correlation to the frequency domain with its values 
varying on the interval [0, 1], where 1 indicates a perfect linear 
prediction of y from x.

In this study, the region of interest (ROIs) consists of 16 channels 
(Detailed channel locations are shown in Figure 1E). And, our study 
used iCOH algorithm between the signals at the paired cortical ROIs, 
and plotted the brain functional connectivity map (see Figure 3).

2.5.3. Feature extraction and classification 
algorithm

Common Spatial Patterns (CSP) is the well-known feature 
extraction method for analyzing EEG signals. However, its 
classification result lies on a certain frequency range. In fact, the 
optimal frequency band of motor imagery is different among subjects 
(Li et al., 2015; Liu et al., 2019; Shu et al., 2019). In recent years, an 
improved feature extraction algorithm called Filter Bank Common 
Spatial Pattern (FBCSP) has been applied to solve this deficiency. This 
method includes three stages (see Figure 4): Firstly, the target data is 
divided into different frequency bands by a band-pass filter. Secondly, 
the CSP algorithm is used to extract features of all sub-band data 
automatically. Lastly, the optimal feature selection is performed based 
on mutual information theory (Ang et al., 2008, 2012). In this paper, 
we divided 7-32HZ frequency band into six sub-bands (i.e., 7–12, 
12–16, 16–20, 20–24, 24–28, and 28-32 Hz). Finally, eight optimal 
target feature vectors are selected to achieve a better classification 
performance and reduce the information redundancy.

Support Vector Machine (SVM) with Gaussian kernel is suitable 
for classing the 2-class small samples of LMI (Yuan and Wang, 2008; 
Somadder and Saha, 2021). The Python platform is utilized to build a 

FIGURE 3

The brain functional connectivity map was grand averaged across subjects for the two conditions with the alpha (A) and beta (B) frequency bands 
separately.
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suitable SVM model. The optimal parameters have a vital influence on 
classification performance. Thus, a cross-validation method is used to 
optimize the parameter C in the cost function and the parameter γ in 
the radial basis function.

2.6. Evaluation

This study used accuracy (Acc) and F1_score to evaluate 
classification performance and stability of the classification model. 
The process of how to calculate Acc and F1_score is as follows (Ren 
et al., 2020):

 Acc TP TN
TP TN FP FN

=
+

+ + +  (6)

 
F score

TP
TP FP

TP
TP FN

TP
TP FP

TP
TP FN

1
2

_
. .

= + +

+
+

+
 (7)

Where, TP, TN, FN, and FP represent the relationship between the 
true-value and predicted-value (see Table 1).

In this study, we constructed four datasets (Dataset 1: Data of 40 
rest trials and 40 V-rest trials; Dataset 2: Data of 40 rest trials and 40 
no-LMI trials; Dataset 3: Data of 40 rest trials and 40 KI-LMI trials; 
Dataset 4: Data of 40 V-rest trials and 40 KI-LMI trials). Each data set 
is classified into two categories. Five-fold cross-validation is used to 
calculate the average accuracy.

The normality test results show that the significance level of the 
normality test is p > 0.05. EEG data fit a normality distribution. 
Therefore, statistical results of this paper were analyzed by paired 
T-test and One Sample T-test. These statistical test methods were 
calculated by using SPSS 24.0 mathematical tool. Subsequently, 
statistical graphs were drawn by MATLAB 2016 and GraphPad 
Prism 8.

3. Results

3.1. Research 1: verifying that KI is induced 
by vibrating Achilles tendon

This research aims to verify the feasibility of inducing KI via 
vibrating Achilles tendon and analyze the EEG features 
produced by KI.

3.1.1. Oral questionnaire (Q1)
After completing all the experimental tasks, each subject was 

given an oral questionnaire (Q1) to explore the correlation between 
vibration stimulation and KI. Its results are shown in Table 2. Firstly, 
we  inquired Q1 that do you  feel your feet moving slightly during 
V-rest. Thirteen subjects’ answer is ‘Yes’. Three subject’s answer is ‘No’. 
In practice, however, their feet were not moving. Therefore, 

FIGURE 4

The Offline analysis process. This process includes the preprocessing, sub-band filter feature extraction (i.e., CSP), feature selection and classification.

TABLE 1 The confusion matrix of true-value and predicted-value.

Confusion matrix True-value

1 0

Predicted-value 1 TP FP

0 FN TN
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experiment 1 verified that KI (i.e., feel their feet moving) was felt 
subjectively by most subjects during vibrating Achilles tendon.

3.1.2. Topographical distribution of rest and 
V-rest

The first row of Figure 5 displays the grand-averaged topographical 
distribution for V-rest task relative to the rest task. In the period of 
V-rest task, there is a slight ERD phenomenon for Contralateral 
cerebral cortex (i.e., left hemispheric region) in both the β band and 
the α + β band, and the area around the Cz and CPz electrode (i.e., 

around the sensorimotor cortex) is predominantly activated. 
Therefore, induced KI by vibratory stimulation could not only be felt 
subjectively by subjects but also reflected in 
electrophysiological features.

3.1.3. Quantifying the independent effect of KI on 
rest task

The brain topographic maps of V-rest and rest show differences 
(see Figure 5). Our study classified V-rest and rest to quantify the 
independent effect of KI on rest task. Classification performance of 

TABLE 2 The results of oral questionnaire.

Question Content Result (number)

Q1 Do you feel your feet moving slightly during V-rest?
No Yes

3 13

Q2 Is KI conducive to focusing on LMI task?
No Yes

4 12

Q3 Which LMI paradigm do you prefer?
no-LMI KI-LMI

4 12

FIGURE 5

Grand-averaged topographical distribution for V-rest, no-LMI and KI-LMI task relative to the rest task. The color bar denotes ERD/ERS. The Cz 
represents the anatomical location of the lower-limb motor cortical area.
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rest and V-rest for all subjects is shown in Figure 6. Results were 
statistically evaluated using a one-sample T-test. The lowest and 
highest accuracy are 65.0 and 86.25%, respectively. The average 
accuracy of all subjects achieved 74.3%, significantly higher than the 
random accuracy (50%). Therefore, there were statistically significant 
EEG features which is generated by KI.

3.2. Research 2: exploring whether KI 
enhances LMI

3.2.1. Topographical distribution and Cz-ERD 
power of no-LMI and KI-LMI

The second and third rows of Figure 5 displays the grand-averaged 
topographical distribution for no-LMI and KI-LMI task relative to the 
rest task. In the period of no-LMI task, the significant activation 
region mainly occurred around the Cz electrode (i.e., around the 
sensorimotor cortex) in both the α band and the α + β band. Compared 
with the no-LMI task, the KI-LMI task can generate more obvious 
cortex activation at all frequency bands (i.e., significant ERD). And, 
there is most significant activation for the around Cz and CPz 
electrodes at all frequency bands. Especially, this activation is more 
localized to the contralateral side of the cerebral cortex during 
performing the KI-LMI task.

The Cz-ERD power of LMI under 8-30 Hz is analyzed (see 
Figure  7), since the above topographical distribution displays a 
stronger feature around the Cz electrode. The Cz-ERD power of 
no-LMI shows a significant decreasing trend at the beginning of the 
task except for Subject H3, H5, H7 and H13(see Figure 7A). Especially, 
the ERD power of Subject H3, H7, and H13 shows a slight decreasing 
trend after adding KI to the LMI task (i.e., KI-LMI). For most subjects, 
the ERD tendency was more obvious and the lowest ERD power (i.e., 
E_min) was lower during the KI-LMI task. Figure 7B displays the 

average ERD of all subjects. These results manifest that the average 
ERD tendency is more obvious during the KI-LMI task. On the one 
hand, the E_min value is significantly smaller during the KI-LMI task 
than the no-LMI task (E KI_min  < E no_min , p < 0.001, see 
Figure 7D). On the other hand, TKI is significantly shorter during the 
KI-LMI task than the no-LMI task (TKI < Tno, p < 0.01, see Figure 7C).

Figure 8 shows the grand-averaged relative power of Cz electrode 
for V-rest, no-LMI and KI-LMI task relative to the rest task at α and β 
bands. The results in the α band included the following (see 
Figure 8A): (1) During the V-rest task, there was a slight decrease in 
relative power over the whole task period; (2) During the no-LMI task, 
there is a large relative power decline, and the peak value reaches 
-21 dB; (3) Compared with the no-LMI task, KI-LMI task produced a 
more significant relative power decline, with a peak value of 
−21.5 dB. The results in the β band included the following (see 
Figure 8B): (1) During the V-rest task, relative power decreased within 
0 ~ 1 s and fluctuated around the baseline within 1 ~ 3 s; (2) Compared 
with the α band, the β band produced a similar power decline trend 
during the LMI, but had a smaller peak value (i.e., no-LMI: −1.7 dB, 
KI-LMI: −2.1 dB).

3.2.2. Results of brain functional connectivity 
analysis for no-LMI/KI-LMI task

The iCOH of functional connectivity patterns was analyzed to plot 
the functional connectivity map and explore the effect of KI on brain 
activity. The functional connectivity map (see Figure 3) was grand-
averaged across subjects for the two conditions with the alpha and 
beta frequency bands separately. In the Figure 3, The color variation 
and thickness of the connecting lines indicate the strength of 
functional connectivity between channels. During the no-LMI task, 
the channels had weak functional connectivity in the α band and 
strong functional connectivity in the β band. During KI-LMI, KI 
enhances the functional connectivity between the channels in both α 

FIGURE 6

2-class accuracy of rest and V-rest. The black dashed line represents random (50%) of accuracy that means no difference between V-rest and rest. 
Data: mean ± SD. ***p < 0.001.
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and β bands. In particular, the contralateral cortical connectivity was 
enhanced, such as channels FC1, FC3, CP3, C1, C3, C5, Cz, etc. These 
results indicate that KI can improve the spatial feature distribution of 
the brain during performing LMI task, enhance the connectivity 
among cerebral cortical channels, and thus improve the information 
transmission process between brain regions.

3.2.3. Classification performance of rest/V-rest 
and no-LMI/KI-LMI

Figure 9 shows the comparison of classification accuracy across 
subjects for classifying LMI and rest task (i.e., no-LMI vs. rest and 
KI-LMI vs. rest). The subjects with less than 70% classification accuracy 
are defined as BCI-illiterate (Shu et al., 2017; Zhang et al., 2021). As 

FIGURE 7

Cz-ERD power during LMI in the 8–30 Hz band. (A) Cz-ERD power of the 16 subjects. The black vertical dashed line indicates the start of LMI. The 
black horizontal dashed line represents the baseline. The red dashed line represents the lowest ERD power (E_mini

no, i = 1, 2, 12) during the no-LMI task 
for each subject i. (B) Average ERD of all subjects for no-LMI and KI-LMI tasks. The red/blue triangle represents the lowest ERD power (E_minno or E_
minKI) during the KI-LMI task. The red and blue rectangles indicate the time (Ti

no and Ti
Kl) it takes to reach E_mini

no for the LMI task. (C) and (D) Statistical 
test of E_mini

no/E_mini
Kl and Ti

no/Ti
Kl. E_minno, E_minKI, Tno and TKI represent the mean value of E_mini

no, E_mini
Kl, Ti

no and Ti
Kl for all subjects, respectively. 

Data: mean ± SD. **p < 0.01, *** p < 0.001.
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shown in Figure 9, six healthy subjects (H1, H2, H4, H11, H13 and 
H15) were BCI-illiterate during the no-LMI task. After adding the KI 
to the LMI (i.e., KI-LMI), average accuracy of these five subjects 
increased by 9.17%. In addition, KI generally improves LMI-BCI 
offline accuracy and F1_score except for subject H3, and the accuracy 
and F1_score of all subjects were greater than 70%. Especially, four 
subjects (H6, H8, H10 and H12) reached a higher BCI accuracy (> 
85%). Classification results were statistically evaluated using a paired 
t-test method. The offline accuracy was significantly improved for 
classifying LMI and rest (p < 0.001), achieving a 6.88% improvement 
and reaching 82.19%. And, the results of Table  3 indicates that 
average F1_score value increased by 7.6% after adding KI to LMI task 
(i.e., KI-LMI task). Seeing Table  3 for detailed F1_score of 
each participant.

Additionally, Figure 9 and Table 3 shows the results of classfing 
V-rest and KI-LMI. After adding vibration to the LMI and rest task 
(i.e., KI-LMI and V-rest), the simulated online average classification 
accuracy and F1_score of most subjects (H1, H4, H6, H8, H9, H11, 
H12, H13, H14, H15and H16) was improved (average accuracy: 
79.84% > 74.09%, average F1_score: 79.24% > 72.6%), and there were 
significant differences in two groups (p < 0.05). And, the simulated 
online average performance for all subjects was presented in Figure 9 
and Table 3 (i.e., average accuracy: 77.23 > 75.31%, and average F1_
score: 76.4 > 74.3%).

3.2.4. Oral questionnaire (Q2 and Q3)
After completing all the experimental tasks, each subject was 

given an oral questionnaire (Q2 and Q3) to explore the superiority of 
this research paradigm. Its results are shown in Table  2. Twelve 
subjects thought that KI was more conducive to focusing on LMI task. 
Thus they preferred the KI-LMI paradigm. In contrast, four subjects 
thought that a slight vibration is not enough to produce KI to enhance 
their LMI ability. Additionally, one subjects (H3) thought that a strong 
vibration distracted his attention on LMI.

3.2.5. Statistical test of C3/Cz/C4-ERD power
The topographical distribution in Figure 5 shows more obvious 

contralateral cortex activation during right lower-limb MI task. In 
order to explore the activation effect of KI on different major channels, 
the paired T-test analyzed the ERD power of channels C3, Cz and C4 
under the no-LMI/KI-LMI tasks (see Table 4). For the channels C3 
and Cz, there are significant differences (p = 0.006 < 0.01 and 
p = 0.007 < 0.01) in α frequency band, and there are significant 
differences (p = 0.001 and p = 0.000 < 0.001) in α + β frequency band. 
There are significant differences (p = 0.026 < 0.05) in β frequency band 
at channel C3. Nevertheless, for the channel C4, all p-values are far 
bigger than 0.05, which indicates there is no significant difference.

4. Discussion

In the previous research, it was well known that brain injury often 
inhibits the LMI-ability after stroke, making the detection of EEG 
features harder (Takeda et al., 2007; Meyer et al., 2016; Park et al., 
2016). The Higher BCI performance generally accelerates the patients’ 
recovery process (Guan, 2016). Therefore, enhancing LMI ability of 
stroke patients is critical to achieve rehabilitation. The latest study 
revealed that mimicking known biological control principles could 
improve BCI performance for subjects (Flesher et al., 2021). A natural 
way of interaction is acceptable to users, which increases its usefulness 
in practice (Xu et al., 2021). Previous studies used visual induction 
consistent with motor tasks to enhance LMI ability (Boord et al., 2010, 
Kitahara et al., 2017, Yu et al., 2018). Additionally, kinesthetic illusion 
(KI) is a type of proprioception that can complement the biological 
control loop. Two studies verified that a combination of upper-limb 
MI and KI feedback improved MI-BCI performance (Barsotti et al., 
2018; Song and Kim, 2019). However, no previous study has 
investigated enhancing LMI ability by KI to design LMI-BCI 
paradigm. Therefore, based on the above researches, we designed two 
research contents to verify the feasibility of inducing KI via vibrating 

FIGURE 8

Grand-averaged relative power of Cz electrode for V-rest, no-LMI and KI-LMI task relative to the rest task at α band (A) and β band (B).
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Achilles tendon, analyze the EEG features produced by KI, and explore 
whether KI could enhance LMI ability.

Long-term research found that KI, where one feels muscle stretch, 
could be  induced by artificially vibrating the muscle spindle and 
tendon of the limbs (Naito, 2004; Tapin et al., 2021). Neuroimaging 
studies have revealed that KI and MI have similar activation patterns 
in brain regions (Naito and Ehrsson, 2001; Naito, 2004; Giannopulu 
and Mizutani, 2021). In addition, vibration is better transmitted to the 
muscle spindle if applied over the tendon, where it results in 
longitudinal stretch of the muscle fibers (Taylor et al., 2017). Vibration 
stimulation of tendon is an effective way to induce KI (Barsotti et al., 
2018; Tapin et  al., 2021). In this study, the most obvious tendon 
location (i.e., Achilles tendon) was selected as the vibration stimulation 
point. In medical contexts, using a MI questionnaire as an ability 
predictor tool could be one possible way to estimate BCI performance 
(Vasilyev et al., 2017; Rimbert et al., 2018). In the field of BCI, two 
classical work studied two different MI questionnaires. The first study 
concludes that the KMI scores obtained from the Kinesthetic and 
Visual Imagery Questionnaire could predict the performance of a 
MI-based BCI for able-bodied subjects (Vuckovic and Osuagwu, 

2013). The second study found that the representation of subjective 
behaviors, calculated using the Motor Imagery Questionnaire 
Revised-Second Edition, and the control of the BCI seem to 
be strongly linked (Marchesotti et al., 2016). These studies have shown 
that MI questionnaires are probably the most accepted and validated 
methods to measure the subjective feelings of a subject. Therefore, our 
study conducted an oral questionnaire for all subjects to explore the 
results of the experiment. In this study, firstly, an oral questionnaire 
(Q1) of Table 2 verified that KI was felt subjectively by most subjects 
(13 out of 16 subjects) during vibrating Achilles tendon. Secondly, KI 
induced by vibratory stimulation enhanced the activation of the area 
around the Cz and CPz electrodes (i.e., around the sensorimotor 
cortex) during the V-rest task (see Figure 5). This result is consistent 
with previous research that activated cortex area (i.e., contralateral 
primary motor cortex) by KI was similar to the activated cortex area 
by MI (Rosenkranz and Rothwell, 2003; De Moraes Silva et al., 2015; 
Lopez et  al., 2017; Giannopulu and Mizutani, 2021; Zhang et  al., 
2021). Similarly, a recent study showed that vibrotactile neurofeedback 
training on upper limbs can increase motor cortical excitability in 
hand muscle representation corresponding to a muscle engaged by the 

FIGURE 9

Comparison of classification accuracy across subjects. The black dashed line represents 70% of accuracy. Data: mean ± SD. * p < 0.05.

TABLE 3 Results of the F1_score across subjects.

Task Subject/F1_score (%)

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 Ave

Class1 63.9 66.8 78.7 65 75.0 80.5 83.0 87.7 70.8 86.7 65.1 80.2 66.9 74.1 64.9 79.5 74.3

Class2 76 70.1 74.9 76.1 77.3 87.9 84.2 93.8 82.1 92 80 94.8 77.3 81.7 78.5 83.7 81.9

Class3 81 65.5 58.3 71.1 69.1 88.2 72.3 92.3 83.9 86.1 69.3 81.4 72.9 79.1 68.9 83.5 76.4

Class1 represents the classification of rest and no-LMI; Class2 represents the classification of rest and KI-LMI; Class3 represents the classification of V-rest and KI-LMI; The bold number 
represents the maximum value for each subject.
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MI (Grigorev et al., 2021). Lastly, the classification performance of rest 
and V-rest shows a significant difference (see Figure 6), which suggests 
that activated the independent effects on the cerebral cortex by KI can 
be classified clearly. This experimental study verified that induced KI 
via vibrating Achilles tendon may be  feasible, and provided a 
theoretical basis for applying KI to LMI-BCI paradigm. In order to 
better explore the difference and correlation between LMI and KI, 
we need to ensure the same duration of LMI and KI, so this study 
chose the same induction duration as LMI (i.e., 3.5 s). The above 
results verified the effectiveness of KI induction with a duration of 
3.5 s. However, there are still some defects in this study. 3.5 s may not 
be the best KI induction duration. Future studies will investigate the 
optimal duration of KI induction.

Both studies demonstrated that a combination of upper-limb MI 
and KI feedback improved MI-BCI performance (Barsotti et al., 2018; 
Song and Kim, 2019). In our study, we used many analytical methods 
(e.g., ERD power, topographical distribution, oral questionnaire, and 
functional connectivity analysis) to explore whether KI enhances 
LMI ability. Previous studies explored functional connectivity of 
different brain regions based on Granger causality analysis. These 
studies found that the significant causal connection from the visual 
area to the motor area under the “visual–auditory context” and the 
“visual context” may indicate the information transmission process 
of the dorsal pathway evoked by the visual stimulus. Therefore, our 
study used iCOH algorithm to analyze the brain functional 
connectivity between different channels. The results in Figure  3 
indicate that KI can enhance the information transmission process 
between brain regions (especially the sensorimotor area) during 
performing the LMI task, thus improving LMI ability. In previous 
mechanism studies, the anatomical location of the lower limbs motor 
cortex deep within the central cortex of the interhemispheric fissure, 
which corresponds to the Cz electrode of the 10/10 standard electrode 
distribution system (Neuper and Pfurtscheller, 1996; Jurcak et al., 
2007; Boord et al., 2010). Therefore, in our study about LMI, the Cz 
electrode was selected to analyze the ERD trend in the 8–30 Hz band 
during LMI tasks. When adding KI to the LMI task (i.e., KI-LMI), the 
cortex activation around the Cz electrode is more significant (see 
Figure 5), and the Cz-ERD tendency was more obvious for most 
subjects (see Figure 7A). To evaluate the MI enhancements of the 
proposed paradigm, we compared the observed ERD for different 
LMI tasks. The peak ERD amplitudes (i.e., E no KI

i_min / ) were used 
to quantitatively evaluate the enhancement due to more immersive 
LMI from the paradigms (Song and Kim, 2019). Moreover, the ERD 
arrival time (i.e., Tno KI

i
/ ) was adopted as an indicator of temporal 

characteristics of ERD because it was used to evaluate the 

appropriateness of ERD for BCI, which is also an MI enhancement 
target for BCI system (Duann and Chiou, 2016; Song and Kim, 2019). 
In our study, TKI is significantly shorter during the KI-LMI task than 
the no-LMI task (TKI < Tno, see Figure  7C). Therefore, the ERD 
feature of KI-LMI was detected more quickly (i.e., better real-time; 
Duann and Chiou, 2016; Song and Kim, 2019), then the KI may 
speed up the online detection of LMI-BCI. The above significant ERD 
indexes are beneficial to EEG feature detection, thus improving the 
classification performance of BCI system. Referring to previous 
research methods (Storzer et al., 2016), this study plotted the grand-
averaged relative power of Cz electrode (see Figure 8), in order to 
more clearly compare the effect of KI on different tasks. The results 
of Figure 8 and Figure 5 are consistent, and both show that relative 
power in the α band presents a more significant decline trend than 
that in the β band. This result indicated that the optimal frequency 
band of performing LMI is 8-13 Hz for some subjects in this study. 
And, above results suggest that KI enhances the relative power 
decline for all frequency bands during performing LMI and improves 
LMI ability of subjects.

In terms of BCI performance, KI significantly improved the 
average accuracy of classifying LMI and rest task (see Figure  9), 
achieving a 6.88% improvement. Especially, it is noteworthy that the 
average accuracy of all BCI-illiterate increased by 9.17%. Therefore, 
KI could enhance LMI, and enhanced LMI by KI may be more suitable 
for the BCI-illiterate (e.g., the partial stroke patients; Shu et al., 2017, 
2019; Ren et al., 2020). Considering that if KI is applied to online 
LMI-BCI, vibration stimulation need to be performed simultaneously 
during LMI and rest tasks. Therefore, KI-LMI and V-rest are classified 
in our study to simulated online BCI performance. The results of this 
study show that KI is more conducive to the online classification of 
LMI and rest tasks for most subjects(see Figure 9, KI-LMI vs. V-rest, 
p < 0.05). Grand-averaged topographical distribution indicates that 
EEG features of KI-LMI and V-rest tasks have significant differences 
(i.e., More significant ERD feature were observed under the KI-LMI 
task). Therefore, better results can be obtained by classifying KI-LMI 
and V-rest tasks. Obviously, the high classification performance of 
KI-LMI/V-rest tasks is more suitable for the practical application of 
LMI-BCI paradigm. In addition, the results of Figure 7 and Figure 8 
show that KI can enhance ERD feature and relative energy changes for 
most subjects. This result is more helpful for CSP to extract the two 
types of features with significant differences, so as to improve the 
classification performance (see Figure 9). In contrast, one subject (H3) 
thought that KI distracted his attention during the LMI task. Our 
research analyzed that higher vibration frequency might make this 
subject nervous because the Cz-ERD power of this subject was 
relatively unstable before the LMI task (see Figure 7A). The offline 
accuracy of the H3 is decreased by 1.25% (see Figure 9) due to the 
above reasons. Our research paradigm presented significant 
performance advantages for most subjects. Consequently, it may 
be more conducive to the training and rehabilitation of most stroke 
patients. Previous studies have found that activated areas of the 
cerebral cortex are biased toward the contralateral sensorimotor 
cortex during performing the LMI and visual observation task (Li 
et al., 2015; Yu et al., 2018). In this research (Tariq et al., 2020), LDA, 
SVM, and KNN model were used to classify bilateral foot LMI task. 
And, the single trial analysis and classification models resulted in high 
discrimination accuracies, i.e., maximum 83.4% for beta-ERS, 79.1% 
for beta-ERD, and 74.0% for mu-ERD. The above results are consistent 

TABLE 4 Statistical results of the paired t-test.

Channel P-value of no-LMI vs. KI-LMI

α (8-13 Hz) β (14-30 Hz) α + β  
(8-30 Hz)

C3 0.006** 0.026* 0.001***

Cz 0.007** 0.094 0.000***

C4 0.866 0.148 0.191

This table compares the ERD power of two tasks in the same condition. Data: mean ± SD. 
*p < 0.05, **p < 0.01, ***p < 0.001.
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with our study in Figure  5. Additionally, our statistical results in 
Table 4 proved that the KI significantly enhanced the cortex activation 
at the left and middle region of sensorimotor cortex (i.e., channels C3 
and Cz) during the LMI task. This result is consistent with the 
topographical distribution (see Figure  5). Therefore, the KI may 
be conducive to distinguishing the left/right LMI task. This study 
provides a new idea to design the left/right LMI-BCI paradigm.

Previous studies have shown that 70 to 80 Hz is an effective way 
to induce KI, and high vibration frequencies cannot induce KI 
(Naito et al., 1999; Naito, 2004; Taylor et al., 2017). The results of 
our study indicate that 180 Hz can induce lower-limb KI, which is 
somewhat different from previous results. Different vibration 
stimulation locations will induce different KI effects. Previous 
studies explored the optimal stimulation frequency range through 
vibration of the upper limb tendon (Naito et al., 1999; Naito, 2004; 
Taylor et al., 2017; Barsotti et al., 2018), while this study explored 
the effect of inducing lower-limb KI through vibration of Achilles 
tendon. The cerebral cortex region corresponding to the upper-limb 
and lower-limb has a great difference in physiological structure (i.e., 
the anatomical location of the lower-limb motor cortical area is 
smaller and deep within the contralateral mesial cortex; the lower 
limb is located at the distal physical level) (Michael, 2016), which 
makes the optimal vibration frequency for inducing the upper-limb 
and lower-limb KI may have great difference. The experimental 
results of our study verified the feasibility of lower-limb KI induced 
by vibration of Achilles tendon at 180 Hz, which provides some 
reference for the research on inducing lower-limb KI with vibration 
stimulation. However, the vibration parameters (e.g., vibration 
frequency and vibration duration) were not optimized in this study. 
In the future, the influence of different vibration parameters on 
inducing lower-limb KI will be explored to produce the optimal 
induction effect. Studies have shown that MI-BCI is beneficial to 
improve the rehabilitation of stroke patients (Mane et al., 2020). 
Therefore, our research paradigm further improves the 
rehabilitation effect and lower-limb motor function of stroke 
patients by improving the performance of LMI-BCI. However, our 
study removed data with more artifacts before classification, which 
may affect the results of online classification in LMI-BCI. Future 
research will design online experiments to explore the effect of 
removing data with more artifacts on online application. Although 
the obtained results are statistically significant, it is acknowledged 
that the sample size of the current study is limited to 16 healthy 
subjects. Therefore, more healthy subjects and stroke patients 
should be recruited to further study the features in sensorimotor 
cortex caused by KI in different groups.

5. Conclusion

In this study, we  integrated the induced KI by vibrating 
Achilles tendon with LMI tasks to enhance LMI ability. Our 
research 1 has verified that the KI was induced by vibratory 
stimulation on Achilles tendon, and found that the activated 
cortex area by the KI was similar to the activated cortex area by 
LMI. Research 2 demonstrated that the KI could enhance the 
activation of the sensorimotor cortex and improve the 
classification preformance of offline and simulated online 
LMI-BCI. Additionally, this study found that KI improved the 

ipsilateral difference of cerebral cortex. The LMI-BCI paradigm 
of this study is conducive to enhance LMI ability and provides a 
new idea to design a novel left/right LMI-BCI paradigm. This 
proposed approach enriched the content of LMI-BCI technology 
and accelerated its research progress.
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