98 research outputs found

    Enhancing copper infiltration into alumina using spark plasma sintering to achieve high performance Al2O3/Cu composites

    Get PDF
    Al2O3/Cu (with 30 wt% of Cu) composites were prepared using a combined liquid infiltration and spark plasma sintering (SPS) method using pre-processed composite powders. Crystalline structures, morphology and physical/mechanical properties of the sintered composites were studied and compared with those obtained from similar composites prepared using a standard liquid infiltration process without any external pressure. Results showed that densities of the Al2O3/Cu composites prepared without applying pressure were quite low. Whereas the composites sintered using the SPS (with a high pressure during sintering in 10 minutes) showed dense structures, and Cu phases were homogenously infiltrated and dispersed with a network from inside the Al2O3 skeleton structures. Fracture toughness of Al2O3/Cu composites prepared without using external pressure (with a sintering time of 1.5 hours) was 4.2 MPaĀ·m1/2, whereas that using the SPS process was 6.5 MPaĀ·m1/2. These toughness readings were increased by 18% and 82%, respectively, compared with that of pure alumina. Hardness, density and electrical resistivity of the samples prepared without pressure were 693 HV, 82.5% and 0.01Ī©ā€¢m, whereas those using the SPS process were 842 HV, 99.1%, 0.002Ī©ā€¢m, respectively. The enhancement in these properties using the SPS process are mainly due to the efficient pressurized infiltration of Cu phases into the network of Al2O3 skeleton structures, and also due to high intensity discharge plasma which produces fully densified composites in a short time

    Experimental and theoretical analysis of microstructural evolution and deformation behaviors of CuW composites during equal channel angular pressing

    Get PDF
    CuW composites were synthesized using an equal channel angular pressing (ECAP) technique. Microstructural evolution during sintering process was investigated using both optical microscopy and transmission electron microscopy (TEM), and their deformation mechanisms were studied using finite element analysis (FEA). Results showed severe plastic deformation of the CuW composites and effective refinement of W grains after the ECAP process. TEM observation revealed that the ECAP process resulted in lamellar bands with high densities dislocations inside the composites. Effects of extrusion temperature and extrusion angles on stress-strain relationship and sizes of deformation zones after the ECAP process were investigated both theoretically and experimentally. When the extrusion angle was 90Ā°, a maximum equivalent stress of ~1001ā€ÆMPa was obtained when the extrusion test was done at room temperature of 22ā€ÆĀ°C, and this value was lower than compression strength of the CuW composites (1105.43ā€ÆMPa). The maximum equivalent strains were varied between 0.5 and 0.7. However, when the extrusion temperature was increased to 550ā€ÆĀ°C and further to 900ā€ÆĀ°C, the maximum equivalent stresses were decreased sharply, with readings of 311ā€ÆMPa and 68ā€ÆMPa, respectively. When the extrusion angle was increased to 135Ā°, the maximum equivalent stresses were found to be 716.9ā€ÆMPa, 208ā€ÆMPa, and 32ā€ÆMPa for the samples extruded at temperatures of 22ā€ÆĀ°C, 550ā€ÆĀ°C and 900ā€ÆĀ°C, respectively. Simultaneously, the maximum equivalent strains were decreased to 0.2ā€“0.4. Furthermore, results showed that the maximum equivalent stress was located on the sample's external surface and the stress values were gradually decreased from the surface to the center of samples, and the magnitudes of plastic deformation zones at the surface were much larger than those at the central part of the sintered samples. FEA simulation results were in good agreements with experimentally measured ones

    Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition

    Full text link
    Face recognition is a prevailing authentication solution in numerous biometric applications. Physical adversarial attacks, as an important surrogate, can identify the weaknesses of face recognition systems and evaluate their robustness before deployed. However, most existing physical attacks are either detectable readily or ineffective against commercial recognition systems. The goal of this work is to develop a more reliable technique that can carry out an end-to-end evaluation of adversarial robustness for commercial systems. It requires that this technique can simultaneously deceive black-box recognition models and evade defensive mechanisms. To fulfill this, we design adversarial textured 3D meshes (AT3D) with an elaborate topology on a human face, which can be 3D-printed and pasted on the attacker's face to evade the defenses. However, the mesh-based optimization regime calculates gradients in high-dimensional mesh space, and can be trapped into local optima with unsatisfactory transferability. To deviate from the mesh-based space, we propose to perturb the low-dimensional coefficient space based on 3D Morphable Model, which significantly improves black-box transferability meanwhile enjoying faster search efficiency and better visual quality. Extensive experiments in digital and physical scenarios show that our method effectively explores the security vulnerabilities of multiple popular commercial services, including three recognition APIs, four anti-spoofing APIs, two prevailing mobile phones and two automated access control systems

    Microstructure evolution and enhanced properties of Cuā€“Crā€“Zr alloys through synergistic effects of alloying, heat treatment and low-energy cyclic impact

    Get PDF
    In this paper, CuCrā€“Zr alloys prepared by vacuum melting with adding La and Ni elementswere heat-treated and aged, followed by plastic deformation using low-energy cyclic impact tests, to simultaneously improve their mechanical and electrical properties. Results showed that the grain size of the casted Cuā€“Crā€“Zr alloys was significantly reduced after the solid-solution aging and plastic deformation process. There were a lot of dispersed Cr and Cu5Zr precipitates formed in the alloys, and the numbers of dislocations were significantly increased. Accordingly, the hardness was increased from 78 to 232 HV, and the tensile strength was increased from 225 to 691 MPa. Electrical conductivity has not been significantly affected after these processes. The enhancement of overall performance is mainly attributed to the combined effects of solid-solution hardening, fine grain hardening, and precipitation/dislocation strengthening

    Controlled Interfacial Reactions and Superior Mechanical Properties of High Energy Ball Milled/Spark Plasma Sintered Tiā€“6Alā€“4Vā€“Graphene Composite

    Get PDF
    Ball milling process has become one of the effective methods for dispersing graphene nanoplates (GNPs) uniformly into matrix; however, there are often serious issues of structural integrity and interfacial reactions of GNPs with matrix. Herein, GNPs/Tiā€6Alā€4V (GNPs/TC4) composites are synthesized using high energy ball milling (HEBM) and spark plasma sintering. Effects of ball milling on microstructural evolution and interfacial reactions of GNPs/TC4 composite powders during HEBM are investigated. As ball milling time increase, particles size of TC4 is first increased (e.g., ā‰ˆ104.15ā€‰Ī¼m, 5ā€‰h), but then decreased to ā‰ˆ1.5ā€‰Ī¼m (15ā€‰h), which is much smaller than that of original TC4 powders (ā‰ˆ86.8ā€‰Ī¼m). TiC phases are in situ formed on the surfaces of TC4 particles when ball milling time is 10Thinsp;h. GNPs/TC4 composites exhibit 36ā€“103% increase in compressive yield strength and 57ā€“78% increase in hardness than those of TC4 alloy, whereas the ductility is reduced from 28% to 7% with an increase of ball milling time (from 2 to 15ā€‰h). A good balance between high strength (1.9 GPa) and ductility (17%) of GNPs/TC4 composites is achieved when the ball milling time is 10ā€‰h, attributing to the synergistic effects of grain refinement strengthening, solid solution strengthening, and load transfer strengthening from GNPs and in situ formed TiC

    Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure

    Get PDF
    In this study, titanium matrix composites reinforced with graphene nanoplates (GNPs) were successfully prepared via an in-situ processing strategy. Both TiC nanoparticles and TiC@GNPs strips are in-situ formed at the grain boundaries, and enhance interfacial bonding strength between GNPs and Ti matrix by acting as rivets in the microstructure. The GNPs can be retained in the center of TiC layer, which provides a shielding protection effect for the GNPs. These in-situ formed TiC nanoparticles are linked together to form a discontinuous and three-dimensional (3D) network structure. Due to the formation of 3D network architecture and improved interfacial bonding, the composites show both high strength and good ductility. The significant strengthening effect reinforced by the GNPs can be attributed to a homogeneous distribution of in-situ formed TiC nanoparticles and TiC@GNPs strips, resulting in TiC interface/particle strengthening and excellent interfacial load transfer capability

    Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications

    Get PDF
    Graphene has been extensively explored to enhance functional and mechanical properties of metal matrix nanocomposites for wide-range applications due to their superior mechanical, electrical and thermal properties. This article discusses recent advances of key mechanisms, synthesis, manufacture, modelling and applications of graphene metal matrix nanocomposites. The main strengthening mechanisms include load transfer, Orowan cycle, thermal mismatch, and refinement strengthening. Synthesis technologies are discussed including some conventional methods (such as liquid metallurgy, powder metallurgy, thermal spraying and deposition technology) and some advanced processing methods (such as molecular-level mixing and friction stir processing). Analytical modelling (including phenomenological models, semi-empirical models, homogenization models, and self-consistent model) and numerical simulations (including finite elements method, finite difference method, and boundary element method) have been discussed for understanding the interface bonding and performance characteristics between graphene and different metal matrices (Al, Cu, Mg, Ni). Key challenges in applying graphene as a reinforcing component for the metal matrix composites and the potential solutions as well as prospectives of future development and opportunities are highlighted

    miR-216b Post-Transcriptionally Downregulates Oncogene KRAS and Inhibits Cell Proliferation and Invasion in Clear Cell Renal Cell Carcinoma

    Get PDF
    Background/Aims: Increasing evidence has shown that miR-216b plays an important role in human cancer progression. However, little is known about the function of miR-216b in renal cell carcinoma. Methods: The expression levels of miR-216b in renal cell carcinoma tissues and cell lines were examined by qRT-PCR. The biological role of miR-216b in renal cell carcinoma proliferation and/or metastasis was examined in vitro and in vivo. The target of miR-216b was identified by a dual-luciferase reporter assay. The expression level of KRAS protein was measured by western blotting. Results: The expression of miR-216b was downregulated in clear cell renal cell carcinoma (ccRCC) cell lines and specimens compared to the adjacent normal tissues. Furthermore, miR-216b can bind to the 3ā€™untranslated region (UTR) of KRAS and inhibit the expression of KRAS through translational repression. The in vitro study revealed that miR-216b attenuated ccRCC cell proliferation and invasion. Furthermore, in vivo study also showed that miR-216b suppressed tumor growth. MiR-216b exerted its tumor suppressor function through inhibiting the KRAS-related MAPK/ERK and PI3K/AKT pathways. Conclusion: Our findings provide, for the first time, significant clues regarding the role of miR-216b as a tumor suppressor by targeting KRAS in ccRCC

    Experimental Study on the Seismic Performance of Socket Bridge Piers

    No full text
    In order to accelerate the construction of bridge substructure, a socket joint construction that does not require interfaces roughening between the precast columns and the reserved cavity of the precast foundation is raised in this paper. The seismic performance of such fabricated bridge piers was investigated by carrying quasistatic tests on socket circular pier specimens of different embedment depths with a compared cast-in-place pier specimen. The experimental results showed that the prefabricated piers with the embedment length larger than 1.0 times the column diameter, featuring smooth interfaces that was free of roughening, had a failure mode of bending damage as well as the cast-in-place component. As the embedment depth increases, the seismic performance indexes of the socket bridge pier, including bearing capacity, ductility, and energy dissipation capacity, are improved. The seismic performance indexes of a socket bridge pier specimen with an embedment depth of 1.5 times the columnā€™s diameter in the test are better than the cast-in-place one

    Infiltration sintering of WCu alloys from copper-coated tungsten composite powders for superior mechanical properties and arc-ablation resistance

    Get PDF
    W70Cu30(W-30 wt.% Cu) alloys were fabricated using cold pressing and infiltration sintering methods from two types of powders, i.e., mixed copper-tungsten (M-Cu-W) powders and our newly developed copper-coated tungsten composite (Cu@W) powders. Microstructure, mechanical and arc-ablation properties of the W70Cu30 alloys were investigated, and the mechanism of enhanced physical/mechanical properties and arc-erosion resistance of the W70Cu30 alloys was discussed. For the W70Cu30 alloys prepared using the Cu@W powders, their physical properties, including hardness, electrical conductivity and relative density were much better than those prepared from the M-Cu-W powders. The W70Cu30 alloys fabricated from the Cu@W powders were free of cracks, and showed homogenous distributions of W and Cu network structures. Whereas for the alloys prepared from the M-Cu-W powders, segregation of Cu was observed and the segregation size was about 40ā€“100 Ī¼m. Characterization of arc-erosion morphologies of the W70Cu30 alloys prepared with the Cu@W powders revealed the occurrence of evaporation of Cu phase; whereas that of W70Cu30 alloys prepared with the M-Cu-W powders revealed the occurrence of the sputtering of Cu. After arc breakdown for 200 times, mass loss of alloys made using the mixed powders was twice as much as those made using the coated composite powders. Based on the experimental results and theoretical analysis, an arc breakdown mechanism of the WCu-C alloys using the composite powders was proposed which is attributed to the formation of a homogeneous Cu-Cu network structure to uniformly disperse arc energy and dissipate the generated heat, thus prolonging the service life of the WCu alloy contacts
    • ā€¦
    corecore