140 research outputs found

    Association of serum levels of lipid and its novel constituents with the different stages of esophageal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to evaluate the association of immunoglobulin G type of autoantibodies to oxidized low-density lipoprotein (oxLDL-lgG) and oxLDL-lgM with the progression of esophageal squamous cell carcinoma (ESSC).</p> <p>Methods</p> <p>Residents from Feicheng, China aged 40 to 69 years were screened for esophageal lesions in a screening program conducted during the period of January 2008 to December 2006. There were 33 controls with normal esophageal squamous epithelium cells, 37 patients with basal cell hyperplasia, 47 with esophageal squamous cell dysplasia, and 43 with ESCC. All the participants were diagnosed by biopsy and histopathological examination. Adiponectin, oxidized low-density lipoprotein (oxLDL), autoantibodies against oxLDL (oxLDL-ab), OxLDL-lgG, and OxLDL-lgM were determined by enzyme linked immunosorbent assay (ELISA). Total cholesterol, High-density lipoprotein (HDL), triglyceride, serum albumin, and blood pressure were co-estimated. Analysis of covariance for lipid levels was used to control the influence of covariates.</p> <p>Results</p> <p>The level of oxLDL-lgM increased gradually along with esophageal carcinoma progression. The oxLDL-lgM levels in the ESCC group were the highest after possible covariates were controlled. Binary logistic regression showed that oxLDL-lgM had a positive correlation with the development of esophageal carcinoma, while oxLDL and oxLDL-ab had a negative correlation with ESSC. No significant association between the levels of oxLDL-lgG and adiponectin and the different stages of ESSC was observed.</p> <p>Conclusion</p> <p>The present study shows that the decreased oxLDL and oxLDL-ab and the elevated oxLDL-lgM serum levels may relate to the development and progression of ESSC.</p

    Predictive Value of Plasma MicroRNA-216a/b in the Diagnosis of Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is a common human malignancy with poor survival, which was usually diagnosed at an advanced stage. MicroRNAs (miRNAs), a class of single stranded noncoding RNAs with only 17-25 ribonucleotides, were demonstrated to play an important role in lots of cancers. In the recent years, increasing evidence revealed that circulating miRNAs exhibited great potential in the diagnosis of various types of cancers. The present study was designed to evaluate the diagnostic value of plasma miRNA-216a/b for ESCC. Our results showed that the expression level of plasma miRNA-216a/b was significantly lower in ESCC patients compared with that of healthy controls. The receiver operating characteristic (ROC) curve analysis yielded an area under the ROC curve (AUC) value of 0.877 [95% CI (confidence interval): 0.818-0.922] for miRNA-216a and 0.756 (95% CI: 0.685-0.819) for miRNA-216b. Clinical data indicated that plasma miRNA-216a/b were inversely correlated with lymph node metastasis and TNM stage. Additionally, the plasma miRNA-216b expression level was significantly upregulated in postoperative samples compared to preoperative samples. Our study, for the first time, demonstrated that plasma miRNA-216a/b might serve as potential biomarkers for the diagnosis of ESCC and dysregulation of miRNA-216a/b might be involved in the progression of ESCC

    The diploid genome sequence of an Asian individual

    Get PDF
    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics

    Cellular anatomy of the mouse primary motor cortex.

    Get PDF
    An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture

    Effect of the element ratio in the doping component on the properties of 0.975(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 ceramics

    No full text
    A new series of ternary perovskite 0.975(0.8Bi Na TiO –0.2Bi K TiO )–0.025Bi Mg Nb O (BNT–BKT–BMN, BMN‐xyz) ceramics were designed and synthesized. The effect of the element ratio in the doping component BMN on the strain, ferroelectric, piezoelectric, and dielectric properties of the BNT–BKT matrix were studied. The BMN‐430 composition without Nb element exhibits the typical features of non‐ergodic relaxor, which is characterized by a higher piezoelectric coefficient d and a butterfly‐shaped strain curve with negative strain. The introduction of trace Nb can significantly enhance the ergodicity of the system, reflecting in the high positive strain response and strain coefficient (d33∗\u3e750pm/V) of BMN‐321 composition. In contrast, there is no significant difference in the properties between the presence and absence of Mg element. The temperature‐dependent electrical behaviors of BMN‐xyz ceramics were analyzed based on impedance spectroscopy. This study may be helpful to the design of the chemical modification strategy for the BNT‐based relaxor ferroelectrics. [Figure not available: see fulltext.] 1/2 1/2 3 1/2 1/2 3 x /3 y /3 z /3 3 3

    Interaction between tns and β-lactoglobulin

    No full text
    The major bovine milk protein β-lactoglobulin (β-LG), a member of the lipocalin superfamily, can bind a wide range of ligands and act as a specific transporter. In the present study, the combination of the hydrophobic molecule 2-(p-toluidino)-6-naphthalenesulfonic acid sodium salt (tns) with β-LG was analyzed using fluorescence spectroscopy and autodock modeling to discern the major binding sites of the protein and to determine the capacity of other small ligands to bind with β-LG by utilizing tns as a reference. The experimental data indicate that in a neutral pH environment, tns is located in the hydrophobic domain of the β-LG protein, 2.5 nm away from the Trp19 residues of β-LG. The binding constant of tns to β-LG is (3.30±0.32)10The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Dielectric temperature stability and energy storage performance of B-site Sn\u3csup\u3e4+\u3c/sup\u3e-doped BNKBST ceramics

    No full text
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature. The 0.65Bi0.5Na0.25K0.25TiO3–0.35Bi0.2Sr0.7Ti1−xSnxO3 (BNKBST-xSn) ceramics were synthesized via a solid-phase reactive sintering technique. The effects of doping Sn4+ ions on the energy storage, dielectric, ferroelectric properties and microstructure characteristics for BNKBST ceramics were systematically studied. Remarkably, BNKBST-0.02Sn exhibits a superior dielectric temperature stability, manifested as the change rate for dielectric constant ∆ε/ε150°C is smaller than 15% during a very wide temperature range of 30–400 °C. In addition, BNKBST-0.02Sn ceramic achieves a high energy storage density Wrec = 0.81 J/cm3 (under the electric field 80 kV/cm) with an outstanding energy storage efficiency 89.5%, which make it reasonable to be applied in dielectric capacitors due to its excellent dielectric thermal stability and energy storage properties. The electrical conductivity behaviors of BNKBST-xSn were also analyzed with the assistance of impedance spectroscopy
    corecore