135 research outputs found

    Elevated CO2 causes different growth stimulation, water- and nitrogen-use efficiencies, and leaf ultrastructure responses in two conifer species under intra- and interspecific competition

    Get PDF
    The continuously increasing atmospheric carbon dioxide concentration ([CO2]) has substantial effects on plant growth, and on the composition and structure of forests. However, how plants respond to elevated [CO2] (e[CO2]) under intra- and interspecific competition has been largely overlooked. In this study, we employed Abies faxoniana Rehder & Wilson and Picea purpurea Mast. seedlings to explore the effects of e[CO2] (700 p.p.m.) and plant-plant competition on plant growth, physiological and morphological traits, and leaf ultrastructure. We found that e[CO2] stimulated plant growth, photosynthesis and nonstructural carbohydrates (NSC), affected morphological traits and leaf ultrastructure, and enhanced water- and nitrogen (N)- use efficiencies in A. faxoniana and P. purpurea. Under interspecific competition and e[CO2], P. purpurea showed a higher biomass accumulation, photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies compared with A. faxoniana. However, under intraspecific competition and e[CO2], the two conifers showed no differences in biomass accumulation, photosynthetic capacity, and water- and N-use efficiencies. In addition, under interspecific competition and e[CO2], A. faxoniana exhibited higher NSC levels in leaves as well as more frequent and greater starch granules, which may indicate carbohydrate limitation. Consequently, we concluded that under interspecific competition, P. purpurea possesses a positive growth and adjustment strategy (e.g. a higher photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies), while A. faxoniana likely suffers from carbohydrate limitation to cope with rising [CO2]. Our study highlights that plant-plant competition should be taken into consideration when assessing the impact of rising [CO2] on the plant growth and physiological performance.Peer reviewe

    Species-specific responses to drought, salinity and their interactions in Populus euphratica and P. pruinosa seedlings

    Get PDF
    Aims Drought and salinity are severe abiotic stress factors, which limit plant growth and productivity, particularly in desert regions. In this study, we employed two desert poplars, Populus euphratica Oliver and Populus pruinosa Schrenk seedlings, to compare their tolerance to drought, salinity and combined stress. Methods We investigated species-specific responses of P. euphratica and P. pruinosa in growth, photosynthetic capacity and pigment contents, nonstructural carbohydrate concentrations, Cl- allocation, osmotic regulation and the accumulation of reactive oxygen species (ROS) under drought, salinity and the combined stress. Important Findings Populus pruinosa exhibited greater growth inhibitory effects, photosynthesis decline, stomata! closure and ROS accumulation, and lower antioxidant enzyme activities and osmotic regulation compared with P. euphratica under drought, salinity and especially under their combined stress. On the other hand, salt-stressed P. euphratica plants restricted salt transportation from roots to leaves, and allocated more Cl- to coarse roots and less to leaves, whereas salt-stressed P. pruinosa allocated more Cl- to leaves. It was shown that there is species-specific variation in these two desert poplars, and P. pruinosa suffers greater negative effects compared with P. euphratica under drought, salinity and especially under the combined stress. Therefore, in ecological restoration and afforestation efforts, species-specific responses and tolerances of these two poplar species to drought and salinity should be considered under climate change with increasing drought and soil salinity developing.Peer reviewe

    A Dataset And Benchmark Of Underwater Object Detection For Robot Picking

    Full text link
    Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by addressing the following challenges. Firstly, the currently available datasets basically lack the test set annotations, causing researchers must compare their method with other SOTAs on a self-divided test set (from the training set). Training other methods lead to an increase in workload and different researchers divide different datasets, resulting there is no unified benchmark to compare the performance of different algorithms. Secondly, these datasets also have other shortcomings, e.g., too many similar images or incomplete labels. Towards these challenges we introduce a dataset, Detecting Underwater Objects (DUO), and a corresponding benchmark, based on the collection and re-annotation of all relevant datasets. DUO contains a collection of diverse underwater images with more rational annotations. The corresponding benchmark provides indicators of both efficiency and accuracy of SOTAs (under the MMDtection framework) for academic research and industrial applications, where JETSON AGX XAVIER is used to assess detector speed to simulate the robot-embedded environment

    A Unified Model for Video Understanding and Knowledge Embedding with Heterogeneous Knowledge Graph Dataset

    Full text link
    Video understanding is an important task in short video business platforms and it has a wide application in video recommendation and classification. Most of the existing video understanding works only focus on the information that appeared within the video content, including the video frames, audio and text. However, introducing common sense knowledge from the external Knowledge Graph (KG) dataset is essential for video understanding when referring to the content which is less relevant to the video. Owing to the lack of video knowledge graph dataset, the work which integrates video understanding and KG is rare. In this paper, we propose a heterogeneous dataset that contains the multi-modal video entity and fruitful common sense relations. This dataset also provides multiple novel video inference tasks like the Video-Relation-Tag (VRT) and Video-Relation-Video (VRV) tasks. Furthermore, based on this dataset, we propose an end-to-end model that jointly optimizes the video understanding objective with knowledge graph embedding, which can not only better inject factual knowledge into video understanding but also generate effective multi-modal entity embedding for KG. Comprehensive experiments indicate that combining video understanding embedding with factual knowledge benefits the content-based video retrieval performance. Moreover, it also helps the model generate better knowledge graph embedding which outperforms traditional KGE-based methods on VRT and VRV tasks with at least 42.36% and 17.73% improvement in HITS@10

    Nickel-based superalloy architectures with surface mechanical attrition treatment:Compressive properties and collapse behaviour

    Get PDF
    Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices, making them simultaneously strong and tough. Herein, we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy (IN625) microlattices after surface mechanical attrition treatment (SMAT). Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71% and also triggered a transition in their mechanical behaviour. Two primary failure modes were distinguished: weak global deformation, and layer-by-layer collapse, with the latter enhanced by SMAT. The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT, which effectively leveraged the material and structural effects. These results were further validated by finite element analysis. This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.</p

    Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of plants with HrpN<sub>Ea</sub>, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid <it>Myzus persicae</it>, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the <it>Arabidopsis thaliana </it>(Arabidopsis) PP2-encoding gene <it>AtPP2-A1 </it>in resistance to <it>M. persicae </it>when the plant was treated with HrpN<sub>Ea </sub>and after the plant was transformed with <it>AtPP2-A1</it>.</p> <p>Results</p> <p>The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic <it>M. persicae </it>females on leaves of Arabidopsis plants treated with HrpN<sub>Ea </sub>and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpN<sub>Ea </sub>in wild-type (WT) Arabidopsis but not in <it>atpp2-a1</it>/E/142, the plant mutant that had a defect in the <it>AtPP2-A1 </it>gene, the most HrpN<sub>Ea</sub>-responsive of 30 <it>AtPP2 </it>genes. In WT rather than <it>atpp2-a1</it>/E/142, the deterrent effect of HrpN<sub>Ea </sub>treatment on the phloem-feeding activity accompanied an enhancement of <it>AtPP2-A1 </it>expression. In PP2OETAt (<it>AtPP2-A1</it>-overexpression transgenic <it>Arabidopsis thaliana</it>) plants, abundant amounts of the <it>AtPP2-A1 </it>gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpN<sub>Ea</sub>-treated WT and PP2OETAt plants, respectively, compared with control plants.</p> <p>Conclusions</p> <p>The repression in phloem-feeding activities of <it>M. persicae </it>as a result of <it>AtPP2-A1 </it>overexpression, and as a deterrent effect of HrpN<sub>Ea </sub>treatment in WT Arabidopsis rather than the <it>atpp2-a1</it>/E/142 mutant suggest that <it>AtPP2-A1 </it>plays a role in plant resistance to the insect, particularly at the phloem-feeding stage. The accompanied change of aphid population in leaf colonies suggests that the function of <it>AtPP2-A1 </it>is related to colonization of the plant.</p

    Halo Properties and Mass Functions of Groups/Clusters from the DESI Legacy Imaging Surveys DR9

    Full text link
    Based on a large group/cluster catalog recently constructed from the DESI Legacy Imaging Surveys DR9 using an extended halo-based group finder, we measure and model the group-galaxy weak lensing signals for groups/clusters in a few redshift bins within redshift range 0.1z<0.60.1 \leqslant z<0.6. Here, the background shear signals are obtained based on the DECaLS survey shape catalog derived with the \textsc{Fourier\_Quad} method. We divide the lens samples into 5 equispaced redshift bins and 7 mass bins, which allow us to probe the redshift and mass dependence of the lensing signals and hence the resulting halo properties. In addition to these sample selections, we have also checked the signals around different group centers, e.g., brightest central galaxy (BCG), luminosity weighted center and number weighted center. We use a lensing model that includes off-centering to describe the lensing signals we measure for all mass and redshift bins. The results demonstrate that our model predictions for the halo masses, bias and concentrations are stable and self-consistent among different samples for different group centers. Taking advantage of the very large and complete sample of groups/clusters, as well as the reliable estimation of their halo masses, we provide measurements of the cumulative halo mass functions up to redshift z=0.6z=0.6, with a mass precision at 0.030.090.03\sim0.09 dex.Comment: revised version submitted to Ap

    A living biobank of matched pairs of patient-derived xenografts and organoids for cancer pharmacology

    Get PDF
    Patient-derived tumor xenograft (PDX)/organoid (PDO), driven by cancer stem cells (CSC), are considered the most predictive models for translational oncology. Large PDX collections reflective of patient populations have been created and used extensively to test various investigational therapies, including population-trials as surrogate subjects in vivo. PDOs are recognized as in vitro surrogates for patients amenable for high-throughput screening (HTS). We have built a biobank of carcinoma PDX-derived organoids (PDXOs) by converting an existing PDX library and confirmed high degree of similarities between PDXOs and parental PDXs in genomics, histopathology and pharmacology, suggesting “biological equivalence or interchangeability” between the two. Here we demonstrate the applications of PDXO biobank for HTS “matrix” screening for both lead compounds and indications, immune cell co-cultures for immune-therapies and engineering enables in vitro/in vivo imaging. This large biobank of >550 matched pairs of PDXs/PDXOs across different cancers could become powerful tools for the future cancer drug discovery
    corecore