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Abstract The continuously increasing atmospheric carbon dioxide concentration 23 

([CO2]) has substantial effects on plant growth, and on the composition and structure 24 

of forests. However, how plants respond to elevated [CO2] (e[CO2]) under intra- and 25 

interspecific competition has been largely overlooked. In this study, we employed Abies 26 

faxoniana and Picea purpurea seedlings to explore the effects of e[CO2] (700 ppm) and 27 

plant-plant competition on plant growth, physiological and morphological traits, and 28 

leaf ultrastructure. We found that e[CO2] stimulated plant growth, photosynthesis and 29 

nonstructural carbohydrates (NSC), affected morphological traits and leaf ultrastructure, 30 

and enhanced water and nitrogen use efficiencies in A. faxoniana and P. purpurea. 31 

Under interspecific competition and e[CO2], P. purpurea showed a higher biomass 32 

accumulation, photosynthetic capacity and rate of ectomycorrhizal infection, and 33 

higher water and nitrogen use efficiencies compared with A. faxoniana. However, under 34 

intraspecific competition and e[CO2], the two conifers showed no differences in 35 

biomass accumulation, photosynthetic capacity, and water and nitrogen use efficiencies. 36 

In addition, under interspecific competition and e[CO2], A. faxoniana exhibited higher 37 

NSC levels in leaves as well as more frequent and greater starch granules, which may 38 

indicate carbohydrate limitation. Consequently, we concluded that under interspecific 39 

competition, P. purpurea possesses a positive growth and adjustment strategy (e.g. a 40 

higher photosynthetic capacity and rate of ectomycorrhizal infection, and higher water 41 

and nitrogen use efficiencies), while A. faxoniana likely suffers from carbohydrate 42 

limitation to cope with rising [CO2]. Our study highlights that plant-plant competition 43 

should be taken into consideration when assessing the impact of rising [CO2] on the 44 
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plant growth and physiological performance. 45 

 46 

Keywords: elevated CO2, plant-plant competition, water use efficiency, nitrogen use 47 

efficiency, conifer species 48 
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The atmospheric CO2 concentration ([CO2]) has increased from ~280 ppm during the 67 

19th century industrial revolution to current ~400 ppm (IPCC 2013), and it is predicted 68 

to exceed 1,000 ppm by the year 2100, if the current CO2 emission trend continues 69 

(IPCC 2014). Due to the importance of CO2 to plant photosynthesis, elevated [CO2] 70 

(e[CO2]) would have profound effects on the physiology and growth of individual 71 

plants, and on the structure and function of terrestrial ecosystems. Most earlier studies 72 

have demonstrated that e[CO2] stimulates plants’ photosynthesis, growth and biomass 73 

accumulation, e.g., investigations on Telopea speciosissima seedlings (Huang et al. 74 

2015) and Eucalyptus camaldulensis cuttings (Blackman et al. 2016, Aspinwall et al. 75 

2018) under controlled glasshouse conditions, and on mature eucalypt trees in the 76 

EucFACE experiment (Gimeno et al. 2016). On the other hand, Inauen et al. (2012) 77 

conducted free air CO2 enrichment (FACE) for three seasons in the Swiss Alps and 78 

found that e[CO2] caused no growth stimulation and did not enhance the total biomass 79 

in high-elevation pioneer species, but decreased the aboveground biomass, which was 80 

associated with a higher root biomass allocation. In addition, van der Sleen et al. (2015) 81 

analyzed the stable carbon isotope composition and growth rings of 1,100 trees in 82 

tropical forests and found that no growth stimulation but increasing water use 83 

efficiencies have occurred in tropical trees during the past 150 years of rising [CO2]. 84 

 85 

Typically, e[CO2] changes biomass allocation and leads to a greater allocation to roots, 86 

which helps plants to cope with different environments (Inauen et al. 2012, Way et al. 87 

2015, Apgaua et al. 2019). Concerning leaf gas exchange, e[CO2] generally increases 88 
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photosynthesis, while it decreases stomatal conductance (gs) and transpiration, as 89 

observed in Eucalyptus species (Gimeno et al. 2016, Aspinwall et al. 2018), Populus 90 

cathayana (Chen et al. 2021), and Pinus halepensis (Gattmann et al. 2021). In terms of 91 

leaf morphology, the enhanced leaf thickness and leaf mass per area (decreased specific 92 

leaf area, SLA) have been observed under e[CO2] (Leakey et al. 2009, Duan et al. 2019, 93 

Wang et al. 2020). Furthermore, previous studies have demonstrated that e[CO2] also 94 

affects plant root traits (Pritchard et al. 2008, Mueller et al. 2018, Wang et al. 2020). 95 

For instance, a meta-analysis of 110 case studies found that e[CO2] increases both fine 96 

and coarse root biomass as well as root length and diameter (Nie et al. 2013). 97 

 98 

The storage and remobilization of nonstructural carbohydrates (NSC) play key roles in 99 

plant survival and growth, and NSC buffer stress and disturbance in resource supplies, 100 

and act as indicators of the balance between source (photosynthesis) and sink (growth, 101 

respiration, defense etc.) (Niinemets 2010, Sala et al. 2012, Palacio et al. 2014, Wiley 102 

et al. 2017, 2019). Typically, e[CO2] increases the accumulation of NSC, which may 103 

result in unbalanced C sinks and sources, and in the downregulation of photosynthesis 104 

(Ainsworth and Rogers 2007). For example, Zhao et al. (2012) found that Populus 105 

cathayana females show carbohydrate limitation in mature leaves under e[CO2]. This 106 

may be explained by the declined activity of the primary carboxylating enzyme Rubisco, 107 

associated with the decreased leaf N concentration (Rogers and Ainsworth 2006). In 108 

addition, the accumulation of starch grains in leaf tissues can result in deformed 109 

chloroplasts (Nakano et al. 2000) and altered leaf ultrastucture (Zhao et al. 2012), which 110 
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decrease the conductance of CO2 diffusion from the intercellular space to Rubisco and 111 

induce the suppression of photosynthesis. 112 

 113 

Competition is a biotic factor that may induce changes in the photosynthetic capacity, 114 

nonstructural carbohydrates (Chen et al. 2015, Li et al. 2016, Song et al. 2017), water 115 

use efficiency (Chen et al. 2014, Yu et al. 2017) and nitrogen absorption (Miller et al. 116 

2007, Duan et al. 2014), which, in turn, optimize plants’ performance to cope with 117 

varied environments. In natural ecosystems, plant-plant competition usually interacts 118 

with abiotic factors (e.g. resource availability and temperature), which can induce 119 

unique responses (Niinemets 2010, Guo et al. 2016, Yu et al. 2019). For example, e[CO2] 120 

enhances carbohydrate contents of Fagus sylvatica under intraspecific competition, but 121 

the stimulation is suppressed when F. sylvatica saplings grow mixed with Picea abies. 122 

On the other hand, the stimulation of carbohydrates by e[CO2] in P. abies saplings is 123 

similar under intra- and interspecific competition (Liu et al. 2004). These data revealed 124 

that different species have different responses to e[CO2] (Norby et al. 1999), which may 125 

result in changes in plants’ competitive relations, thus influencing the species 126 

composition and structure, and ecosystem productivity (Anderson-Teixeira et al. 2013). 127 

 128 

Abies faxoniana and Picea purpurea are evergreen coniferous species naturally 129 

distributed in the northern part of the Sichuan province, China (Wang 2004, Taylor et 130 

al. 2006). These two conifers are dominant tree species of subalpine coniferous forests, 131 

and possess different life history traits. P. purpurea is characterized as having high 132 
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longevity (> 500 years) and survivorship, while A. faxoniana has shorter longevity 133 

(usually less than 350 years) and higher shade tolerance (Wang 2004, Taylor et al. 2006). 134 

In several studies, they have been employed to investigate the effects of climate change, 135 

primarily rising [CO2] and temperature (Ran et al. 2013, Li et al. 2015, Yu et al. 2019). 136 

An earlier study by Li et al. (2015) on A. faxoniana seedlings grown under e[CO2] (700 137 

μmol mol-1) found that e[CO2] increases the net photosynthetic rate, nonstructural 138 

carbohydrate content and photosynthetic N use efficiency. However, the present 139 

knowledge of the responses of A. faxoniana and P. purpurea to e[CO2], and of the 140 

interactions of plant-plant competition and e[CO2] are still limited. In addition, previous 141 

studies have observed that plants from high elevation sites show a greater sensitivity to 142 

rising [CO2] (Körner and Diemer 1987, Körner 2003, Inauen et al. 2012). 143 

 144 

In this study, we explored how e[CO2] influences the physiological and functional 145 

characteristics of A. faxoniana and P. purpurea exposed to intra- and interspecific 146 

competition. The biomass accumulation and allocation, root morphological traits, 147 

photosynthetic capacity, leaf ultrastructure, water and nitrogen use efficiencies, and 148 

non-structural carbohydrate contents of these two conifers were determined from e[CO2] 149 

and intra- and interspecific competition experiments. We hypothesized that (1) e[CO2] 150 

causes changes in growth, water and nitrogen use efficiencies, and morphological and 151 

leaf ultrastructure traits, and those are affected by plant-plant competition; (2) e[CO2] 152 

affects the competition relationship and life history strategies of A. faxoniana and P. 153 

purpurea. 154 
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 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

Materials and methods 172 

 173 

Plant material and experimental design 174 

 175 

The study was conducted in an experimental area (2600 m above sea level) of the 176 
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Wanglang National Nature Reserve, Pingwu County, western Sichuan Province, 177 

Southwest China (32°49'-33°02'N, 103°55'-104°10'E, altitude range 2,300-4,980 m). 178 

The long-term climatic conditions and plant composition in the Reserve are described 179 

in our previous study (Yu et al. 2019). A. faxoniana and P. purpurea seedlings with a 180 

uniform size and height (~ 30 cm) were used for the study. At the end of September 181 

2014, two conifer seedlings (10 cm apart from each other) were planted in each plastic 182 

pot (diameter 36 cm, height 40 cm) with homogenized soil (pH 6.03, C 58.19 g kg-1, N 183 

1.38 g kg-1, P 0.60 g kg-1) from their natural habitats. The study included fifteen 184 

replicates per treatment. The experimental design was completely randomized with 185 

three factors (species, competition and [CO2]). There were two competition patterns, 186 

i.e. pure plantations (P) of A. faxoniana + A. faxoniana and P. purpurea + P. purpurea 187 

(intraspecific competition), and mixed plantations (M) of A. faxoniana + P. purpurea 188 

(interspecific competition). PC and MC were pure plantation and mixed plantation 189 

under e[CO2]. CO2 concentrations were elevated to 700 ppm (e[CO2]) in growth 190 

chambers, as described in our previous study (Yu et al. 2019). Experimental treatments 191 

lasted from early May 2015 until the end of August 2016. All seedlings were hand-192 

watered daily or every other day to ensure no limiting soil moisture. 193 

 194 

Growth characteristic measurements 195 

 196 

Five pots of each treatment were randomly chosen and harvested on 30 August 2016. 197 

All harvested seedlings were divided into leaves, stems and roots, then dried at 70 °C 198 
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for 72 h to measure their biomass. Leaf mass fraction (LMF; g g-1), stem mass fraction 199 

(SMF; g g-1) and root mass fraction (RMF; g g-1) were analyzed as the organ 200 

biomass/total plant biomass. The root/shoot ratio (R/S ratio) was analyzed as root 201 

biomass/the sum of leaf and stem biomass. The specific leaf area (SLA, cm2 g-1) was 202 

calculated as leaf area/leaf biomass. The WinRHIZO root-scanning software (Regent 203 

Instruments Inc., Ottawa, ON Canada) was used for root trait measurements. Specific 204 

root length (SRL) was analyzed as root length/root mass and specific root tip density 205 

(SRD) was analyzed as root tip/root length (Dong et al. 2016, Guo et al. 2016). In 206 

addition, the rate of ectomycorrhizal infection (ECM) was indicated as the total number 207 

of mycorrhizal tips per seedling (Yin et al. 2013). 208 

 209 

Leaf gas exchange measurements and transmission electron microscopy 210 

 211 

Healthy current-year leaves from five randomly chosen individuals in each treatment 212 

were selected for light-saturated net photosynthetic rate (Pn) and stomatal conductance 213 

(gs) measurements by the LI-COR 6400 portable photosynthesis system (LI-COR Inc., 214 

Lincoln, NE, USA) with a conifer type chamber (PLC-conifer, PP Systems), conducted 215 

between 08:00 a.m. and 11:30 a.m. in the middle of August 2016. The measurements 216 

were conducted in following conditions: leaf temperature, 25 °C; air vapor pressure 217 

deficit, 1.5 ± 0.5 kPa; relative humidity, 50%; light intensity (PPFD), 1500 μmol m-2 s-218 

1; and CO2 concentration, 400 ± 5 μmol mol-1. Intrinsic water use efficiency (iWUE) 219 

was calculated as the ratio of leaf photosynthesis to stomatal conductance. In addition, 220 
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healthy and intact leaves were sampled for transmission electron microscope analyses 221 

by H-600IV TEM (Hitachi, Tokyo, Japan), conducted according to the methodology of 222 

Zhao et al. (2012). Briefly, small leaf sections (1-2 mm in length) were fixed with 3% 223 

glutaraldehyde (v/v) in 0.1 M phosphate buffer (pH 7.2) for 6-8 h under 4 °C, post-224 

fixed in 1% osmium tetroxide for 1 h and immersed in 0.1 M phosphate buffer (pH 7.2) 225 

for 1-2 h. Then, the leaflets were dehydrated in ethanol and embedded in epon-araldite. 226 

 227 

Determination of leaf N concentration and carbon isotopic composition 228 

 229 

Fine power of leaf samples was used for leaf N measurements by the semi-micro 230 

Kjeldahl method (Mitchell 1998). In addition, the mass-based photosynthetic N use 231 

efficiency (PNUE) was calculated as the mass-based photosynthetic rate (Pn)/leaf N 232 

concentration. Leaf carbon isotopic composition was expressed as δ13C values (relative 233 

to Pee Dee Belemnite), measured by a DELTA V Advantage Isotope Ratio Mass 234 

Spectrometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA) and given as: δ13C 235 

= (Rsample/Rstandard - 1) × 1000, where Rsample is the 13C/12C ratio of the sample and Rstandard 236 

that of the standard. 237 

 238 

Non-structural carbohydrate measurements 239 

 240 

Five randomly chosen plant samples (leaf, stem and root) from each treatment were 241 

selected and grounded into fine powder for soluble sugar and starch determination 242 
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according to the anthrone-sulfuric acid method (Yemm and Willis 1954). About 50 mg 243 

fine powder was put into 10-ml centrifuge tubes, extracted in 4 ml 80% (v/v) ethanol at 244 

80 °C for 30 min, and then centrifuged at 5000 g for 10 min, after which the supernatant 245 

was transferred to a 10-ml centrifuge tube. Then, 2 ml 80% (v/v) ethanol was added to 246 

the sediment, and centrifuged at 5000 g for 10 min. This procedure was repeated again, 247 

the supernatants were combined, and 80% (v/v) ethanol was added to bring the final 248 

volume to 10 ml. Soluble sugar and starch were detected colorimetrically at 625 nm 249 

and 620 nm, respectively. 250 

 251 

Statistical analyses 252 

 253 

Before analyses, data were checked for normality and homogeneity of variances and 254 

log-transformed to correct for deviations from these assumptions when needed. Tukey’s 255 

tests of one-way ANOVAs were used to compare individual traits among treatments at 256 

a significance level of P < 0.05. Three-way ANOVAs were used to test the effects of 257 

species, competition, [CO2] and their interactions. All analyses were carried out with 258 

the Statistical Package for the Social Sciences (SPSS, Chicago, IL, USA) version 18.0. 259 

A principal component analysis (PCA) was used to test coordination among studied 260 

traits, using the R software and RStudio (R version 4.0.3 for Windows, packages readxl, 261 

ggplot2, ggpubr and vegan were used). 262 

 263 

 264 
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 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

Results 281 

 282 

Growth characteristics 283 

 284 

Compared with control treatments, leaf, stem, root and total biomass of both conifers 285 

significantly increased by e[CO2] under both competition patterns (Figure 1 a-d). Under 286 
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e[CO2] and intraspecific competition, the two conifers showed no differences in organ 287 

(leaf, stem and root) and total biomass (Figure 1 a-d). However, P. purpurea showed 288 

higher organ and total biomass compared to A. faxoniana under e[CO2] and 289 

interspecific competition, suggesting a significant species × competition × [CO2] 290 

interaction (Table 1). [CO2] significantly affected leaf, stem and root biomass, and the 291 

R/S ratio (Table 1). The stem mass fraction (SMF) showed a decreasing tendency, 292 

whereas the root mass fraction (RMF) and R/S ratio significantly increased in both 293 

conifers under e[CO2] (Figure 2). The e[CO2] condition decreased SRL but increased 294 

AD in both conifers under both competition patterns (Figure 3a,b), showing a 295 

significant [CO2] effect on these two parameters (Table 1). SRD showed no differences 296 

among different treatments (Figure 3c), but species, competition and [CO2] had 297 

significant effects on ECM (Table 1). The e[CO2] condition increased ECM in both 298 

conifers, and P. purpurea had higher ECM than A. faxoniana under interspecific 299 

competition and e[CO2] (Figure 3d). 300 

 301 

Gas exchange and leaf ultrastructure 302 

 303 

The e[CO2] condition significantly decreased gs, the leaf N content and SLA but 304 

increased Pn in both conifers under both competition patterns (Figure 4a-d). Under 305 

intraspecific competition and e[CO2], the two conifers showed no differences in Pn. 306 

However, when exposed to interspecific competition and e[CO2], Pn of P. purpurea 307 

was significantly higher than that of A. faxoniana. In addition, species, competition and 308 
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[CO2] had significant effects on these four parameters, and species × [CO2] interaction 309 

significantly affected Pn and the leaf N concentration (Table 1). In addition, 310 

ultrastructural alterations were detected in leaves of both conifers. Under control 311 

treatments, the mesophyll cells of both conifers had smooth and continuous cell 312 

membranes and cell walls, and less starch accumulation and fewer granules (Figure 5a-313 

d). However, under e[CO2], both conifers exhibited more frequent and greater starch 314 

granules in chloroplasts (Figure 5e-h). Furthermore, under interspecific competition 315 

and e[CO2], A. faxoniana showed profound modifications with greater starch granules 316 

and swollen chloroplasts, which implied serious damage on cellular ultrastructure 317 

(Figure 5g). 318 

 319 

Resource use efficiency 320 

 321 

The e[CO2] condition significantly increased PNUE, iWUE and δ13C in both conifers 322 

under both competition patterns (Figure 6a-c), suggesting that e[CO2] increases water 323 

and nitrogen use efficiencies (Table 1). Under intraspecific competition and e[CO2], the 324 

two conifers showed no differences in PNUE, iWUE and δ13C. However, P. purpurea 325 

showed significantly higher PNUE and iWUE than A. faxoniana under interspecific 326 

competition and e[CO2]. Furthermore, species × [CO2] and competition × [CO2] 327 

interactions were significant for PNUE and iWUE. Overall, under e[CO2], these two 328 

parameters increased more in P. purpurea exposed to interspecific competition (Table 329 

1). 330 
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 331 

Nonstructural carbohydrates 332 

 333 

In general, e[CO2] increased soluble sugar, starch and NSC concentrations in both 334 

conifers under both competition patterns (Figure 7). Under interspecific competition 335 

and e[CO2], A. faxoniana exhibited significantly higher soluble sugar, starch and NSC 336 

concentrations in leaves, while P. purpurea showed significantly higher soluble sugar, 337 

starch and NSC contents in stems and roots. In addition, species × competition × [CO2] 338 

interactions were significant for soluble sugar, starch and NSC concentrations in all 339 

organs, except for leaf soluble sugar and stem starch concentrations (Table 2). 340 

 341 

PCA 342 

 343 

The PCA model of two components explained 69.38% of the total variance of studied 344 

traits in both conifers in response to plant-plant competition and e[CO2] (Figure 8). 345 

Control and e[CO2] treatments were separated along the first PCA axis. Under e[CO2], 346 

A. faxoniana and P. purpurea exposed to interspecific competition were well separated 347 

from each other (Figure 8). PC1 was strongly influenced by leaf, stem, root and total 348 

biomass, stem soluble sugar, ECM, Pn, PNUE, iWUE, RMF and R/S ratio, which were 349 

negatively correlated with SMF, gs and SRL. PC2 was strongly influenced by leaf 350 

soluble sugar, LMF, leaf, stem and root starch, SRD, and leaf and root NSC. 351 

Furthermore, PNUE, iWUE and ECM showed positive correlations with leaf, stem, root 352 
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and total biomass, and Pn. 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

Discussion 369 

 370 

e[CO2]improved growth and performance but plant-plant competition effects were 371 

found 372 

 373 

Our data revealed that competition and e[CO2] significantly affect biomass 374 



18 
 

accumulation and allocation (e.g. leaf, stem, root and total biomass, SMF, RMF and 375 

R/S ratio; Figures 1,2), as well as morphological characteristics (SRL, AD and SLA; 376 

Figures 3,4) of A. faxoniana and P. purpurea. These results were in line with previous 377 

studies (Huang et al. 2015, Duan et al. 2019, Dusenge et al. 2019, Wang et al. 2020). In 378 

addition, under a[CO2] conditions (control treatments), the total biomass of either 379 

conifer showed no differences between pure and mixed plantations (P versus M) 380 

(Figure 1d). Under e[CO2], P. purpurea showed higher organ (leaf, stem, root) and total 381 

biomass in a mixed plantation than in a pure plantation, but A. faxoniana showed no 382 

differences between the two plantation types (PC versus MC). These results implied 383 

that the growth of P. purpurea had an advantage compared with A. faxoniana under 384 

e[CO2], which was further supported by the significant interactive effects of species × 385 

competition ×[CO2] on organ and total biomass (Figure 1). Thus, under interspecific 386 

competition, the organ and total biomass of P. purpurea increased more under e[CO2]. 387 

Furthermore, e[CO2] significantly increased RMF and R/S ratio of both conifers, thus 388 

indicating that they show plasticity in their biomass allocation to cope with changing 389 

environments, which confirms previous studies (Wang et al. 2012, Apgaua et al. 2019, 390 

Fan et al. 2020). Plant roots are the most important organ for water and nutrient uptake, 391 

and plasticity allows plants to invest relatively more into roots to improve the capture 392 

of soil nutrients, and the transportation of water and carbohydrates (Portsmuth and 393 

Niinemets 2007). 394 

 395 

Earlier studies have reported that the root diameter increases with rising [CO2] (Nie et 396 
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al. 2013, Wang et al. 2020), and our data confirmed these results, as e[CO2] 397 

significantly increased AD of both conifers under both competition patterns (Figure 3b). 398 

In contrast to AD, e[CO2] significantly decreased SRL of both conifers (Figure 3a), 399 

which implied a lower cost-benefit ratio as well as a superior carbon utilization strategy 400 

(Anderson et al. 2010, Pokorný et al. 2013). Furthermore, the increased root diameter 401 

under e[CO2] is generally associated with an enhanced absorption surface area 402 

(Eissenstat 1992). Such increased absorption capacity could offset the negative effect 403 

resulting from decreased SRL under e[CO2] to some extent. In addition to root 404 

morphological traits, rising [CO2] usually enhances the level of mycorrhizal infection 405 

(Norby et al. 1987, Treseder 2004, Pandey et al. 2015). For instance, a free air CO2 406 

enrichment (FACE) conducted in a temperate forest revealed that e[CO2] enhanced root 407 

colonization by 14% in ECM (Garcia et al. 2008). In accordance with earlier studies, 408 

our results showed that e[CO2] increased the level of ECM in both conifers, and P. 409 

purpurea had higher ECM than A. faxoniana under interspecific competition and e[CO2] 410 

(Figure 3d). It is well known that mycorrhiza can promote nutrient absorption and plant 411 

growth, and they play important roles in helping plants to cope with stressful 412 

environments (van der Heijden et al. 1998, Nadeem et al. 2014, Fernandez et al. 2017). 413 

Our results indicated that P. purpurea with higher ECM may have a greater capacity of 414 

nutrient absorption compared with A. faxoniana under e[CO2]. 415 

 416 

In this study, e[CO2] significantly increased Pn but decreased gs in both conifers under 417 

both competition patterns (Figure 4a,b), which is in good agreement with earlier studies 418 
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(Franks et al. 2013, Duan et al. 2019, Dusenge et al. 2019). Rising [CO2] generally 419 

results in enhanced carboxylation, and suppression of oxygenase reactions and 420 

photorespiration, thus increasing plants’ photosynthesis and growth, particularly in C3 421 

plants (Jordan and Ogren 1981, Feng et al. 2014, Pandey et al. 2015). In addition, the 422 

significant interaction of species × [CO2] in Pn indicated that Pn of P. purpurea 423 

increased more compared with A. faxoniana under e[CO2] (Table 1). In terms of leaf 424 

morphology, SLA as an important trait of plants’ carbon economy and construction 425 

consumption, generally decreased under e[CO2] (Figure 4d), which was in line with 426 

earlier studies (Li et al. 2013, Wang et al. 2020). Furthermore, Wright et al. (2004) have 427 

reported that plants with smaller SLA may produce leaves with higher construction 428 

costs under e[CO2], which may imply longer leaf lifespan. In addition, according to the 429 

PCA analysis, there were positive associations among organ and total biomass, Pn, 430 

PNUE, IWUE and ECM (Figure 8). Moreover, under e[CO2], A. faxoniana and P. 431 

purpurea exposed to interspecific competition were well separated from each other. 432 

These results collectively demonstrated that there were species-specific responses in 433 

growth and performance to e[CO2], and those were affected by plant-plant competition. 434 

 435 

e[CO2] increased resource use efficiency but interspecific variation was detected 436 

 437 

Photosynthetic nitrogen use efficiency (PNUE), defined as the ratio of net 438 

photosynthesis per unit nitrogen in a leaf, is closely related to the ecological and 439 

economic characteristics of leaves (Niinemets 1999, Takashima et al. 2004, Hidaka and 440 
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Kitayama 2009). It has been suggested that e[CO2] increases PNUE in tree species 441 

(Leakey et al. 2009, Zhao et al. 2012, Xu et al. 2013). Our results were consistent with 442 

previous studies showing that e[CO2] increases Pn and decreases leaf N concentrations, 443 

thus resulting in enhanced PUNE in both conifers (Figures 4a,b; 6a). The decreased leaf 444 

N concentration under e[CO2] may be due to the “dilution” effect mediated by 445 

accumulated carbohydrates (Tissue et al. 1999, Tausz-Posch et al. 2014). Under 446 

interspecific competition and e[CO2], P. purpurea had significantly higher PNUE than 447 

A. faxoniana (Figure 6a). This was further supported by the significant interactive 448 

effects of species × competition, species × [CO2] and competition × [CO2] on PNUE, 449 

which collectively indicated that PNUE of P. purpurea increased more compared with 450 

A. faxoniana under e[CO2] and interspecific competition (Table 1). 451 

 452 

Plants’ water use strategies play key roles in survival, growth, reproduction and 453 

successful establishment, and climate change (e.g. rising [CO2]) strongly affects plants’ 454 

water use traits (Sandquist et al. 2003, Soh et al. 2019, Driscoll et al. 2020). For example, 455 

previous studies have reported that e[CO2] results in the closure of stomata (decreased 456 

gs) and increased water use efficiency (WUE) (Zhao et al. 2012, Silva et al. 2013, Van 457 

der Sleen et al. 2015, Gimeno et al. 2016, Soh et al. 2019). Our results were consistent 458 

with above statements that e[CO2] increases Pn, along with the closure of stomata 459 

(decreased gs), thus increasing the intrinsic water use efficiency (iWUE) (Figures 4a,b; 460 

6b). Furthermore, the long-term water use efficiency, as revealed by the stable carbon 461 

isotope composition (δ13C, discussed by Farquhar et al. 1989 and Li 1999), also 462 
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increased under e[CO2] (Figure 6c). The reason may be that rising [CO2] induced the 463 

closure of stomata (decreased gs) and enhanced the fixation of 13C, consequently 464 

resulting in increased δ13C. In addition, the significant interactive effects of species × 465 

[CO2] and competition × [CO2] on iWUE collectively indicated that iWUE of P. 466 

purpurea increased more compared with A. faxoniana under e[CO2] and interspecific 467 

competition (Table 1). Driscoll et al. (2020) have demonstrated that enhanced iWUE in 468 

response to e[CO2] potentially alleviates drought stress, as plants could maintain similar 469 

carbon assimilation rates with a decreased water demand. In the present study, under 470 

e[CO2], increased Pn and decreased gs as well as the decreased transpiration rate (data 471 

not shown) resulted in an enhanced water use efficiency, implying that rising [CO2] 472 

may improve both conifers’ tolerance under increased aridity (review by Sekhar et al. 473 

2020). 474 

 475 

Carbon source-sink relationships altered by e[CO2] and plant-plant competition 476 

 477 

A review written by Ainsworth and Rogers (2007) has demonstrated that different 478 

plants have different capacities to deal with excess carbohydrates. For example, poplar 479 

has a large sink capacity when grown under e[CO2], and it could transport most 480 

photosynthates (>90%) during the day (Stitt and Quick 1989, Davey et al. 2006). On 481 

the other hand, e[CO2] increases the accumulations of NSC, resulting in carbohydrate 482 

limitation associated with declined photosynthesis, which may be induced by the 483 

decreased activity of the primary carboxylating enzyme Rubisco (Ainsworth and 484 
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Rogers 2007). In addition, the N concentration of leaves often decreases under 485 

carbohydrate limitation, because N is closely related to Rubisco and transferred to other 486 

parts of the plant (Herms and Mattson 1992). Under interspecific competition and 487 

e[CO2], A. faxoniana exhibited significantly higher soluble sugar, starch and NSC 488 

concentrations in leaves associated with lower photosynthesis compared with P. 489 

purpurea, which implied that A. faxoniana may suffer from carbohydrate limitation that 490 

leads to decreased potential for C acquisition. In addition, this result was supported by 491 

the more frequent and greater starch granules of A. faxoniana observed under 492 

interspecific competition and e[CO2] (Figure 5g). Furthermore, under interspecific 493 

competition and e[CO2], the greater starch granules and swollen chloroplasts indicated 494 

that leaf ultrastructure was seriously damaged in A. faxoniana, which may cause 495 

inhibited photosynthesis (Zhao et al. 2012). On the other hand, P. purpurea 496 

accumulated less carbohydrates in leaves but more in stems and roots under 497 

interspecific competition and e[CO2]. Thus, plant-plant competition potentially altered 498 

carbon source-sink relationships in A. faxoniana and P. purpurea under rising [CO2] 499 

connected with climate change. 500 

 501 

Conclusions 502 

 503 

Our study showed that e[CO2] stimulates plant growth and performance, affects 504 

morphological traits and leaf ultrastructure, and increases water and nitrogen use 505 

efficiencies in A. faxoniana and P. purpurea. However, we also found interspecific 506 
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variation in both conifers’ responses to plant-plant competition and e[CO2]. P. 507 

purpurea, in general, possesses a positive growth and adjustment strategy (e.g. a higher 508 

photosynthetic capacity and rate of ectomycorrhizal infection, higher water and 509 

nitrogen use efficiencies), while A. faxoniana likely suffers carbohydrate limitation 510 

under interspecific competition and e[CO2]. Our results demonstrated that different 511 

species possess different growth and adjustment strategies to cope with rising [CO2], 512 

which potentially changes competitive relations, thus influencing species composition 513 

and ecosystem productivity in subalpine coniferous forests. 514 
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Table 1. Main and interactive effects of species, competition and [CO2] on growth and photosynthetic parameters of A. faxoniana and P. purpurea under different 

competition patterns and [CO2] levels. 

Parameters 

Main effects    Interactions 

Species(S) Competition(C) [CO2]  S×C S×[CO2] C×[CO2] S×C×[CO2] 

Leaf biomass 0.000 0.000 0.000  0.003 0.504 0.102 0.004 

Stem biomass 0.000 0.000 0.000  0.000 0.301 0.000 0.000 

Root biomass 0.000 0.000 0.000  0.000 0.739 0.000 0.000 

Total biomass 0.000 0.000 0.000  0.000 0.915 0.000 0.000 

LMF 0.218 0.302 0.009  0.905 0.285 0.068 0.715 

SMF 0.045 0.957 0.000  0.984 0.036 0.049 0.171 

RMF 0.353 0.071 0.000  0.873 0.182 0.848 0.165 

R/S ratio 0.382 0.072 0.000  0.926 0.189 0.921 0.162 

SRL 0.887 0.410 0.000  0.659 0.958 0.821 0.135 

AD 0.868 0.010 0.000  0.788 0.863 0.015 0.485 

SRD 0.736 0.381 0.780  0.591 0.990 0.395 0.701 

ECM 0.000 0.039 0.000  0.846 0.560 0.179 0.087 

Pn 0.000 0.299 0.000  0.068 0.027 0.001 0.314 

gs 0.290 0.554 0.000  0.409 0.873 0.873 0.478 

Leaf N content 0.000 0.006 0.000  0.520 0.028 0.460 0.968 

SLA 0.103 0.090 0.007  0.751 0.963 0.729 0.039 

PNUE 0.812 0.058 0.000  0.003 0.000 0.000 0.374 

iWUE 0.001 0.029 0.000  0.260 0.034 0.009 0.141 

δ13C 0.003 0.190 0.000  0.104 0.987 0.000 0.560 

LMF, leaf mass fraction; SMF, stem mass fraction; RMF, root mass fraction; R/S ratio, root/shoot ratio; SRL, specific root length; AD, average root diameter; SRD, 

specific root tip density; ECM, the rate of ectomycorrhizal infection; Pn, net photosynthetic rate; gs, stomatal conductance; SLA, specific leaf area; PNUE, 

photosynthetic N use efficiency. Significant values (P < 0.05) are shown in bold. 
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Table 2. Main and interactive effects of species, competition and [CO2] on carbohydrate parameters of A. faxoniana and P. purpurea under different competition 

patterns and [CO2] levels. 

Parameters 

Main effects    Interactions 

Species(S) Competition(C) [CO2]  S×C S×[CO2] C×[CO2] S×C×[CO2] 

Leaf soluble sugar 0.000 0.378 0.000  0.000 0.000 0.000 0.503 

Stem soluble sugar 0.000 0.000 0.000  0.058 0.000 0.000 0.002 

Root soluble sugar 0.000 0.000 0.000  0.000 0.000 0.034 0.000 

Leaf starch 0.000 0.000 0.003  0.000 0.000 0.000 0.000 

Stem starch 0.000 0.000 0.000  0.750 0.014 0.068 0.134 

Root starch 0.000 0.000 0.000  0.000 0.000 0.301 0.000 

Leaf NSC 0.121 0.000 0.000  0.000 0.000 0.019 0.000 

Stem NSC 0.000 0.000 0.000  0.522 0.000 0.660 0.002 

Root NSC 0.000 0.000 0.000  0.000 0.000 0.333 0.000 

Significant values (P < 0.05) are shown in bold. 
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Figure legends 1 

 2 

Figure 1. (a) Leaf biomass, (b) stem biomass, (c) root biomass and (d) total biomass of 3 

A. faxoniana and P. purpurea under different competition patterns and [CO2] levels. 4 

Each value is the mean ± SE (n = 5). Different letters indicate significant differences 5 

among treatments according to Tukey’s tests (P < 0.05). P, intraspecific competition; 6 

M, interspecific competition; PC, intraspecific competition under e[CO2]; MC, 7 

interspecific competition under e[CO2]. 8 

 9 

Figure 2. Biomass allocation of A. faxoniana and P. purpurea under different 10 

competition patterns and [CO2] levels. (a) Leaf biomass fraction (LMF), (b) stem 11 

biomass fraction (SMF), (c) root biomass fraction (RMF) and (d) root to shoot ratio 12 

(R/S ratio). Each value is the mean ± SE (n = 5). Different letters indicate significant 13 

differences among treatments according to Tukey’s tests (P < 0.05). P, intraspecific 14 

competition; M, interspecific competition; PC, intraspecific competition under e[CO2]; 15 

MC, interspecific competition under e[CO2]. 16 

 17 

Figure 3. Root traits of A. faxoniana and P. purpurea under different competition 18 

patterns and [CO2] levels. (a) Specific root length (SRL), (b) average root diameter 19 

(AD), (c) specific root tip density (SRD) and (d) the rate of ectomycorrhizal infection 20 

(ECM). Each value is the mean ± SE (n = 5). Different letters indicate significant 21 

differences among treatments according to Tukey’s tests (P < 0.05). P, intraspecific 22 
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competition; M, interspecific competition; PC, intraspecific competition under e[CO2]; 23 

MC, interspecific competition under e[CO2]. 24 

 25 

Figure 4. (a) Net photosynthetic rate (Pn), (b) stomatal conductance (gs), (c) leaf N 26 

concentration and (d) specific leaf area (SLA) of A. faxoniana and P. purpurea under 27 

different competition patterns and [CO2] levels. Each value is the mean ± SE (n = 5). 28 

Different letters indicate significant differences among treatments according to Tukey’s 29 

tests (P < 0.05). P, intraspecific competition; M, interspecific competition; PC, 30 

intraspecific competition under e[CO2]; MC, interspecific competition under e[CO2]. 31 

 32 

Figure 5. Mesophyll cell observations of A. faxoniana and P. purpurea under different 33 

competition patterns and [CO2] levels by transmission electron microscopy (TEM). (a-34 

d) control treatments: (a) A/AA, (b) P/PP, (c) A/AP, (d) P/AP. (e-h) e[CO2] treatments: 35 

(e) A/AA, (f) P/PP, (g) A/AP, (h) P/AP. The scale bar indicates 2 µm (a). C, chloroplast; 36 

CW, cell wall; S, starch granule. A/AA, A. faxoniana individuals from intraspecific 37 

competition; A/AP, A. faxoniana individuals from interspecific competition; P/AP, P. 38 

purpurea individuals from interspecific competition; P/PP, P. purpurea individuals 39 

from intraspecific competition. 40 

 41 

Figure 6. (a) Photosynthetic nitrogen use efficiency (PNUE), (b) Intrinsic water use 42 

efficiency (iWUE) and (c) carbon isotope composition (δ13C) of A. faxoniana and P. 43 

purpurea under different competition patterns and [CO2] levels. Each value is the mean 44 
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± SE (n = 5). Different letters indicate significant differences among treatments 45 

according to Tukey’s tests (P < 0.05). P, intraspecific competition; M, interspecific 46 

competition; PC, intraspecific competition under e[CO2]; MC, interspecific 47 

competition under e[CO2]. 48 

 49 

Figure 7. Non-structural carbohydrate concentrations in different organs of A. 50 

faxoniana and P. purpurea under different competition patterns and [CO2] levels. (a) 51 

Soluble sugar concentration, (b) starch concentration and (c) NSC concentration. Each 52 

value is the mean ± SE (n = 5). Different letters indicate significant differences among 53 

treatments according to Tukey’s tests (P < 0.05). The bars with and without oblique 54 

lines denote P. purpurea and A. faxoniana, respectively. The white, grey and dark grey 55 

portions denote leaf, stem and root, respectively. P, intraspecific competition; M, 56 

interspecific competition; PC, intraspecific competition under e[CO2]; MC, 57 

interspecific competition under e[CO2]. 58 

 59 

Figure 8. The PCA based on ecophysiological characteristics of Abies faxoniana and 60 

Picea purpurea among different competition patterns and [CO2] levels. The circle, 61 

triangle, square and cross indicate A/AA, A/AP, P/AP and P/PP, respectively. The grey 62 

and black symbols indicate control and e[CO2] treatments, respectively. Pn, net 63 

photosynthetic rate; gs, stomatal conductance; Leaf N, leaf N concentration; SLA, 64 

specific leaf area; PNUE, photosynthetic nitrogen use efficiency; iWUE, intrinsic water 65 

use efficiency; LMF, leaf biomass fraction; SMF, stem biomass fraction; RMF, root 66 
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biomass fraction; RS, R/S ratio; SRL, specific root length; AD, average root diameter; 67 

SRD, specific root tip density; ECM, the rate of ectomycorrhizal infection; SS, soluble 68 

sugar; ST, starch. A/AA, A. faxoniana individuals from intraspecific competition; A/AP, 69 

A. faxoniana individuals from interspecific competition; P/AP, P. purpurea individuals 70 

from interspecific competition; P/PP, P. purpurea individuals from intraspecific 71 

competition. 72 
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