18 research outputs found

    Increased Biting Rate of Insecticide-Resistant Culex Mosquitoes and Community Adherence to IRS for Malaria Control in Urban Malabo, Bioko Island, Equatorial Guinea.

    Get PDF
    Sustaining high levels of indoor residual spraying (IRS) coverage (≥85%) for community protection against malaria remains a challenge for IRS campaigns. We examined biting rates and insecticide resistance in Culex species and Anopheles gambiae s.l., and their potential effect on community adherence to IRS. The average IRS coverage in urban Malabo between 2015 and 2017 remained at 80%. Culex biting rate increased 6.0-fold (P < 0.001) between 2014 and 2017, reaching 8.08 bites per person per night, whereas that of An. gambiae s.l. remained steady at around 0.68. Although An. gambiae s.l. was susceptible to carbamates and organophosphates insecticides, Culex spp. were phenotypically resistant to all four main classes of WHO-recommended IRS insecticides. Similarly, the residual activity of the organophosphate insecticide used since 2017, ACTELLIC 300CS, was 8 mo for An. gambiae s.l., but was almost absent against Culex for 2 mo post-spray. A survey conducted in 2018 within urban Malabo indicated that 77.0% of respondents related IRS as means of protection against mosquito bites, but only 3.2% knew that only Anopheles mosquitoes transmit malaria. Therefore, the increasing biting rates of culicines in urban Malabo, and their resistance to all IRS insecticides, is raising concern that a growing number of people may refuse to participate in IRS as result of its perceived failure in controlling mosquitoes. Although this is not yet the case on Bioko Island, communication strategies need refining to sensitize communities about the effectiveness of IRS in controlling malaria vectors in the midst of insecticide resistance in nonmalaria vector mosquitoes

    Molecular malaria surveillance using a novel protocol for extraction and analysis of nucleic acids retained on used rapid diagnostic tests

    Get PDF
    The use of malaria rapid diagnostic tests (RDTs) as a source for nucleic acids that can be analyzed via nucleic acid amplification techniques has several advantages, including minimal amounts of blood, sample collection, simplified storage and shipping conditions at room temperature. We have systematically developed and extensively evaluated a procedure to extract total nucleic acids from used malaria RDTs. The co-extraction of DNA and RNA molecules from small volumes of dried blood retained on the RDTs allows detection and quantification of P. falciparum parasites from asymptomatic patients with parasite densities as low as 1 Pf/µL blood using reverse transcription quantitative PCR. Based on the extraction protocol we have developed the ENAR (Extraction of Nucleic Acids from RDTs) approach; a complete workflow for large-scale molecular malaria surveillance. Using RDTs collected during a malaria indicator survey we demonstrated that ENAR provides a powerful tool to analyze nucleic acids from thousands of RDTs in a standardized and high-throughput manner. We found several, known and new, non-synonymous single nucleotide polymorphisms in the propeller region of the kelch 13 gene among isolates circulating on Bioko Island, Equatorial Guinea

    Malnutrition in patients admitted to the medical wards of the Douala General Hospital: a cross-sectional study

    No full text
    Abstract Background Malnutrition is common in acutely ill patients occurring in 30–50% of hospitalized patients. Awareness and screening for malnutrition is lacking in most health institutions in sub-Saharan Africa. This study aimed at screening for malnutrition using anthropometric and laboratory indices in patients admitted to the internal medicine wards. Methods A cross-sectional study. We screened for malnutrition in 251 consecutive patients admitted from January to March 2013 in the internal medicine wards. Malnutrition defined as body mass index (BMI) less than 18.5 kg/m2 and/or mid upper arm circumference (MUAC) less than 22 cm in women and 23 cm in men. Weight loss greater than 10% in the last 6 months prior to admission, relevant laboratory data, diagnosis at discharge and length of hospital stay (LOS) were also recorded. Results Mean age was 47 (SD 16) years. 52.6% were male. Mean BMI was 24.44 (SD 5.79) kg/m2 and MUAC was 27.8 (SD 5.0) cm. Median LOS was 7 (IQR 5–12) days. 42.4% of patients reported weight loss greater than 10% in the 6 months before hospitalization. MUAC and BMI correlated significantly (r = 0.78; p < 0.0001) and malnutrition by the two methods showed moderate agreement (κ = 0.56; p < 0.0001). Using the two methods in combination, the prevalence of malnutrition was 19.34% (35/251). Blood albumin and hemoglobin were significantly lower in malnourished patients. Malnourished patients had a significantly longer LOS (p = 0.019) when compared to those with no malnutrition. Malnutrition was most common amongst patients with malignancy. Conclusion Malnutrition is common in patients admitted to the medical wards of the Douala General Hospital. Nutritional screening and assessment should be integrated in the care package of all admitted patients

    Late presentation to HIV/AIDS care at the Douala general hospital, Cameroon: its associated factors, and consequences

    No full text
    Abstract Background The introduction of anti-retroviral treatment (ART) has significantly reduced mortality and morbidity associated with HIV/AIDS. While treatment at early stages of the disease is related to a better prognosis, late presentation (LP) to care is harmful to the infected person, the society and is more costly. We aimed to describe late presentation to HIV care, its associated factors and consequences in patients followed up in a tertiary hospital in Cameroon. Methods We retrospectively assessed patients’ files between 1996 and 2014 at the Douala general hospital (DGH) HIV treatment centre. Late presentation (LP) to HIV care was defined as a CD4+ T cell count< 350 cells/mm3 or advanced clinical stages of the disease (WHO stages 3/4) at first presentation for care. We used logistic regression to study factors associated with late presentation and assessed occurrence of opportunistic infections and mortality at 3, 6 and 12 months after presentation to care. Results Of 1866 files studied, mean age was 40 (SD: 10) years, median CD4+ T cell count was 147 (IQR: 63–270) cells/mm3, 58.2% were at HIV clinical stages 3 and 4. The prevalence of late presentation to HIV care was 89.7% (95% CI: 88.2–91.0%) and remained above 80% from 1996 to 2014. Circumstances of diagnosis: prevention of mother to child transmission program/blood donation (OR = 0.16, 95% CI 0.10–0.29), having a positive partner (OR = 0.16, 95%CI = 0.10–0.26), and routine screening (OR = 0.13, 95%CI = 0.10–0.19) reduced the odds of presenting late compared to clinical suspicion. Students had lower odds of presenting late compared to people who had an employment (OR = 0.50, 95%CI = 0.26–0.98). Calendar time OR = 1.64, 95% CI = 1.08–2.48 for ≥2010 vs. < 2005) increased the odds of late presentation. Mortality and opportunistic infections prevalence remained significantly higher in late presenters at 3, 6 and 12 months than in early presenters. Conclusion Late presentation to HIV care is very high at the DGH and is related to poor outcome. More screening and sensitization campaigns should be carried out in the population to diagnose the disease at an earlier stage

    Development and evaluation of PlasmoPod: A cartridge-based nucleic acid amplification test for rapid malaria diagnosis and surveillance.

    Get PDF
    Malaria surveillance is hampered by the widespread use of diagnostic tests with low sensitivity. Adequate molecular malaria diagnostics are often only available in centralized laboratories. PlasmoPod is a novel cartridge-based nucleic acid amplification test for rapid, sensitive, and quantitative detection of malaria parasites. PlasmoPod is based on reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of the highly abundant Plasmodium spp. 18S ribosomal RNA/DNA biomarker and is run on a portable qPCR instrument which allows diagnosis in less than 30 minutes. Our analytical performance evaluation indicates that a limit-of-detection as low as 0.02 parasites/ÎĽL can be achieved and no cross-reactivity with other pathogens common in malaria endemic regions was observed. In a cohort of 102 asymptomatic individuals from Bioko Island with low malaria parasite densities, PlasmoPod accurately detected 83 cases, resulting in an overall detection rate of 81.4%. Notably, there was a strong correlation between the Cq values obtained from the reference RT-qPCR assay and those obtained from PlasmoPod. In an independent cohort, using dried blood spots from malaria symptomatic children living in the Central African Republic, we demonstrated that PlasmoPod outperforms malaria rapid diagnostic tests based on the PfHRP2 and panLDH antigens as well as thick blood smear microscopy. Our data suggest that this 30-minute sample-to-result RT-qPCR procedure is likely to achieve a diagnostic performance comparable to a standard laboratory-based RT-qPCR setup. We believe that the PlasmoPod rapid NAAT could enable widespread accessibility of high-quality and cost-effective molecular malaria surveillance data through decentralization of testing and surveillance activities, especially in elimination settings

    Real-time, spatial decision support to optimize malaria vector control: The case of indoor residual spraying on Bioko Island, Equatorial Guinea

    No full text
    Public health interventions require evidence-based decision-making to maximize impact. Spatial decision support systems (SDSS) are designed to collect, store, process and analyze data to generate knowledge and inform decisions. This paper discusses how the use of a SDSS, the Campaign Information Management System (CIMS), to support malaria control operations on Bioko Island has impacted key process indicators of indoor residual spraying (IRS): coverage, operational efficiency and productivity. We used data from the last five annual IRS rounds (2017 to 2021) to estimate these indicators. IRS coverage was calculated as the percentage of houses sprayed per unit area, represented by 100x100 m map-sectors. Optimal coverage was defined as between 80% and 85%, and under and overspraying as coverage below 80% and above 85%, respectively. Operational efficiency was defined as the fraction of map-sectors that achieved optimal coverage. Daily productivity was expressed as the number of houses sprayed per sprayer per day (h/s/d). These indicators were compared across the five rounds. Overall IRS coverage (i.e. percent of total houses sprayed against the overall denominator by round) was highest in 2017 (80.2%), yet this round showed the largest proportion of oversprayed map-sectors (36.0%). Conversely, despite producing a lower overall coverage (77.5%), the 2021 round showed the highest operational efficiency (37.7%) and the lowest proportion of oversprayed map-sectors (18.7%). In 2021, higher operational efficiency was also accompanied by marginally higher productivity. Productivity ranged from 3.3 h/s/d in 2020 to 3.9 h/s/d in 2021 (median 3.6 h/s/d). Our findings showed that the novel approach to data collection and processing proposed by the CIMS has significantly improved the operational efficiency of IRS on Bioko. High spatial granularity during planning and deployment together with closer follow-up of field teams using real-time data supported more homogeneous delivery of optimal coverage while sustaining high productivity. Author summary Effective public health interventions rely on high coverage to provide community protection. Coverage is determined by the proportion of a given target population that receives the intervention. The level of coverage required varies across settings and health problems. The question about how one achieves high coverage in an equitable manner is operationally challenging. Here, we describe the use of digital tools to support and optimize the delivery of a crucial and proven malaria control intervention, indoor residual spraying (IRS), on Bioko Island. We demonstrate that the scale at which one plans delivery and calculates coverage is critical for guaranteeing that the whole target population is served equally. We also show that achieving adequate high coverage during IRS implementation is challenging, but can be greatly supported by subdividing the target area into multiple, small area units and by using spatial decision support to guide deployment. We focused on IRS as a specific example, but the same digital tools can be used for other public health interventions, with an approach that promotes decision-making during implementation and allows better monitoring of intervention coverage, resulting in more efficient delivery

    Analysis of asymptomatic malaria cohort.

    No full text
    (A) Correlation of of Cq valuesvales obtained from reference RT-qPCR run on the Biorad CFX96 instrumentintrument and PlasmoPod run on diaxxoPCR. Samples negative for PlasmoPod were assigned a Cq value of -1. (B) Detection probability for PlasmoPod modelled based on reference Cq values. The grey area represents the 95% confidence interval. (C) Detection rate of PlasmoPod stratified by age group. (D) Cq values stratified by age group.</p
    corecore