166 research outputs found

    Tungsten Catalysts for Visible Light Driven Ofloxacin Photocatalytic Degradation and Hydrogen Production

    Get PDF
    Some tungsten catalysts of interest that are synthesized are bismuth tungstate (BT) and Tetrabutylammonium decatungstate (TBADT), using two consolidated procedures. BT is used as a photo-catalyst for the simulated solar light degradation of ofloxacin (OFL) antibiotic under relevant real conditions (µg L−1, fresh water) with the limit of 0.05 g L−1 of catalyst. A quantitative drug decomposition occurred following a bi-exponential first-order law, with an efficiency comparable with the most used P25 TiO2 catalyst. The photocatalytic profiles of OFL at µg L−1 and mg L−1 were monitored by high-pressure liquid chromatography (HPLC) coupled with fluorescence (FD) and ultraviolet (UV) detectors. Additionally, the main photoproducts were identified by high-pressure liquid chromatography coupled to electrospray ionization in tandem with mass spectrometry (HPLC-ESI-MS/MS). The catalyst Tetrabutylammonium decatungstate (TBADT) was used as a catalyst to produce hydrogen from glucose and 2-propanol in aqueous solution, providing hydrogen gas evolution up to 10 µmol g−1 h−1

    Tuning retention and selectivity in reversed-phase liquid chromatography by using functionalized multi-walled carbon nanotubes

    Get PDF
    Aim of this work was to explore the possibility of retention and selectivity tuning in reversed-phase liquid chromatography by means of chemically modified multi-walled carbon nanotubes (MWCNTs). These were synthesized by derivatizing pristine MWCNTs with amino-terminated alkyl chains containing polar embedded groups. A novel hybrid material based on functionalized MWCNTs (MWCNTs-R-NH2) was prepared, characterized and tested. The idea was to design a mixed-mode separation medium basing its sorption properties on the peculiar characteristics of MWCNTs combined with the chemical interactions provided by the functional chains introduced on the nanotube skeleton. MWCNTs-R-NH2 were easily grafted to silica microspheres by gamma radiation (using a 60Co source) in the presence of polybutadiene as the linking agent. The composite was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) analysis in terms of structural morphology, surface area and porosity. The MWCNTs-R-NH2 sorbent was tested as stationary phase. The reversed-phase behaviour was first proved by analysis of alkylbenzenes, while the key role of CNT derivatization in addressing the selectivity/affinity towards the solutes was evidenced by testing three classes of analytes, viz. barbiturates, steroid hormones and alkaloids. These compounds, with different molecular structure and polarity, were here analysed for the first time on CNT-based LC stationary phases. The behaviour of the novel sorbent was compared in terms of retention capability and resolution with that observed using unmodified MWCNTs, pointing out the mixed-mode characteristics of the MWCNTs-R-NH2 material. The same test mixtures were analysed also on a conventional mono-modal separation sorbent (C18) to highlight the particular behaviour of the (derivatized)MWCNTs-based stationary phases. The novel material showed better performance in separation of polar compounds, i.e. barbiturates and alkaloids, than the unmodified MWCNTs and than the C18 column. Results showed that MWCNT functionalization is powerful to modulate retention/selectivity in reversed-phase liquid chromatography. Keywords: Functionalized carbon nanotubes, Liquid chromatography, Mixed-mode stationary phase

    Computational Study of the Stability of Natural Amino Acid isomers

    Get PDF
    The secular debate on the origin of life on our planet represents one of the open challenges for the scientific community. In this endeavour, chemistry has a pivotal role in disclosing novel scenarios that allow us to understand how the formation of simple organic molecules would be possible in the early primitive geological ages of Earth. Amino acids play a crucial role in biological processes. They are known to be formed in experiments simulating primitive conditions and were found in meteoric samples retrieved throughout the years. Understanding their formation is a key step for prebiotic chemistry. Following this reasoning, we performed a computational investigation over 100′000 structural isomers of natural amino acids. The results we have found suggest that natural amino acids are among the most thermodynamically stable structures and, therefore, one of the most probable ones to be synthesised among their possible isomers

    Computational Study of the Stability of Natural Amino Acid isomers

    Get PDF
    The secular debate on the origin of life on our planet represents one of the open challenges for the scientific community. In this endeavour, chemistry has a pivotal role in disclosing novel scenarios that allow us to understand how the formation of simple organic molecules would be possible in the early primitive geological ages of Earth. Amino acids play a crucial role in biological processes. They are known to be formed in experiments simulating primitive conditions and were found in meteoric samples retrieved throughout the years. Understanding their formation is a key step for prebiotic chemistry. Following this reasoning, we performed a computational investigation over 100′000 structural isomers of natural amino acids. The results we have found suggest that natural amino acids are among the most thermodynamically stable structures and, therefore, one of the most probable ones to be synthesised among their possible isomers.</p

    Intermolecular interactions of substituted benzenes on multi-walled carbon nanotubes grafted on HPLC silica microspheres and interaction study through artificial neural networks

    Get PDF
    Purified multi-walled carbon nanotubes (MWCNTs) grafted onto silica microspheres by gamma-radiation were applied as a HPLC stationary phase for investigating the intermolecular interactions between MWCNTs and substituted benzenes. The synthetic route, simple and not requiring CNTs derivatization, involved no alteration of the nanotube original morphology and physical–chemical properties. The affinity of a set of substituted benzenes for the MWCNTs was studied by correlating the capacity factor (k′) of each probe to its physico-chemical characteristics (calculated by Density Functional Theory). The correlation was found through a theoretical approach based on feedforward neural networks. This strategy was adopted because today these calculations are easily affordable for small molecules (like the analytes), and many critical parameters needed are not known. This might increase the applicability of the proposed method to other cases of study. Moreover, it was seen that the normal linear fit does not provide a good model. The interaction on the MWCNT phase was compared to that of an octadecyl (C18) reversed phase, under the same elution conditions. Results from trained neural networks indicated that the main role in the interactions between the analytes and the stationary phases is due to dipole moment, polarizability and LUMO energy. As expected for the C18 stationary phase correlation, is due to dipole moment and polarizability, while for the MWCNT stationary phase primarily to LUMO energy followed by polarizability, evidence for a specific interaction between MWCNTs and analytes. The CNT-based hybrid material proved to be not only a chromatographic phase but also a useful tool to investigate the MWCNT-molecular interactions with variously substituted benzenes. Keywords: Carbon nanotubes, Feedforward neural networks, Intermolecular interaction, Liquid chromatograph

    A chiroptical molecular sensor for ferrocene

    Get PDF
    A chiral molecular sensor is used to recognize ferrocene, with the chiroptical readout used selectively in the presence of competing analytes

    Heterogeneous Photochemistry: Solar Energy Conversion and Environmental Remediation

    Get PDF
    1Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy 2Department of Analytical Chemistry, University of Zagreb, Marulicev Trg 20, 10000 Zagreb, Croatia 3Department of Civil and Environmental Engineering, University of Cyprus, Kallipoleos Street 75, 1678 Nicosia, Cyprus 4Department of Chemical and Environmental Engineering, Institute Center for Water and Environment (iWater), Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, UA
    • …
    corecore