53 research outputs found

    Learning Behavior Characterizations for Novelty Search

    Get PDF

    Incremental vision-based topological SLAM

    No full text
    Published versio

    Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words

    No full text
    Published versio

    Real-time visual loop-closure detection

    No full text
    Published versio

    IOP PUBLISHING

    Get PDF
    Artificial evolution of the morphology and kinematics in a flapping-wing mini-UA

    DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics

    Full text link
    Robots are still limited to controlled conditions, that the robot designer knows with enough details to endow the robot with the appropriate models or behaviors. Learning algorithms add some flexibility with the ability to discover the appropriate behavior given either some demonstrations or a reward to guide its exploration with a reinforcement learning algorithm. Reinforcement learning algorithms rely on the definition of state and action spaces that define reachable behaviors. Their adaptation capability critically depends on the representations of these spaces: small and discrete spaces result in fast learning while large and continuous spaces are challenging and either require a long training period or prevent the robot from converging to an appropriate behavior. Beside the operational cycle of policy execution and the learning cycle, which works at a slower time scale to acquire new policies, we introduce the redescription cycle, a third cycle working at an even slower time scale to generate or adapt the required representations to the robot, its environment and the task. We introduce the challenges raised by this cycle and we present DREAM (Deferred Restructuring of Experience in Autonomous Machines), a developmental cognitive architecture to bootstrap this redescription process stage by stage, build new state representations with appropriate motivations, and transfer the acquired knowledge across domains or tasks or even across robots. We describe results obtained so far with this approach and end up with a discussion of the questions it raises in Neuroscience

    Evolutionary optimisation of neural network models for fish collective behaviours in mixed groups of robots and zebrafish

    Full text link
    Animal and robot social interactions are interesting both for ethological studies and robotics. On the one hand, the robots can be tools and models to analyse animal collective behaviours, on the other hand, the robots and their artificial intelligence are directly confronted and compared to the natural animal collective intelligence. The first step is to design robots and their behavioural controllers that are capable of socially interact with animals. Designing such behavioural bio-mimetic controllers remains an important challenge as they have to reproduce the animal behaviours and have to be calibrated on experimental data. Most animal collective behavioural models are designed by modellers based on experimental data. This process is long and costly because it is difficult to identify the relevant behavioural features that are then used as a priori knowledge in model building. Here, we want to model the fish individual and collective behaviours in order to develop robot controllers. We explore the use of optimised black-box models based on artificial neural networks (ANN) to model fish behaviours. While the ANN may not be biomimetic but rather bio-inspired, they can be used to link perception to motor responses. These models are designed to be implementable as robot controllers to form mixed-groups of fish and robots, using few a priori knowledge of the fish behaviours. We present a methodology with multilayer perceptron or echo state networks that are optimised through evolutionary algorithms to model accurately the fish individual and collective behaviours in a bounded rectangular arena. We assess the biomimetism of the generated models and compare them to the fish experimental behaviours.Comment: 10 pages, 4 figure

    Accessible Cultural Heritage through Explainable Artificial Intelligence

    Get PDF
    International audienceEthics Guidelines for Trustworthy AI advocate for AI technology that is, among other things, more inclusive. Explainable AI (XAI) aims at making state of the art opaque models more transparent, and defends AI-based outcomes endorsed with a rationale explanation, i.e., an explanation that has as target the non-technical users. XAI and Responsible AI principles defend the fact that the audience expertise should be included in the evaluation of explainable AI systems. However, AI has not yet reached all public and audiences , some of which may need it the most. One example of domain where accessibility has not much been influenced by the latest AI advances is cultural heritage. We propose including minorities as special user and evaluator of the latest XAI techniques. In order to define catalytic scenarios for collaboration and improved user experience, we pose some challenges and research questions yet to address by the latest AI models likely to be involved in such synergy
    • 

    corecore