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ABSTRACT
Novelty search and related diversity-driven algorithms pro-
vide a promising approach to overcoming deception in com-
plex domains. The behavior characterization (BC) is a crit-
ical choice in the application of such algorithms. The BC
maps each evaluated individual to a behavior, i.e., some vec-
tor representation of what the individual is or does dur-
ing evaluation. Search is then driven towards diversity in a
metric space of these behaviors. BCs are built from hand-
designed features that are limited by human expertise, or
upon generic descriptors that cannot exploit domain nuance.
The main contribution of this paper is an approach that ad-
dresses these shortcomings. Generic behaviors are recorded
from evolution on several training tasks, and a new BC is
learned from them that funnels evolution towards successful
behaviors on any further tasks drawn from the domain. This
approach is tested in increasingly complex simulated maze-
solving domains, where it outperforms both hand-coded and
generic BCs, in addition to outperforming objective-based
search. The conclusion is that adaptive BCs can improve
search in many-task domains with little human expertise.
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1. INTRODUCTION
As optimization problems and domains become more com-

plex they also tend to become more deceptive, i.e., it becomes
increasingly di�cult to craft an objective function that en-
ables an evolutionary algorithm (EA) to discover the step-
ping stones ultimately leading to a desired solution [21, 28].
Because it is di�cult to scale such objective-based search,
there has been recent interest in diversity-driven algorithms
[3, 13, 14, 19, 22, 26]. In such algorithms, the behavior of an
individual is a vector representation of what the individual
does during evaluation with respect to some given dimen-
sions of interest; the behavior characterization (BC) is the
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function that maps each individual to its behavior. Diver-
sity is then rewarded in a metric space of all possible behav-
iors, e.g., induced by Euclidean distance. Diversity-driven
algorithms are less susceptible to deception, because they
promote innovations, and discourage convergence towards
qualitatively homogeneous populations.

Because diversity-driven algorithms are less focused on
achieving particular goals, BCs can generalize across tasks
drawn from the same domain, even when such tasks are de-
ceptive. For the purposes of this paper, a task encodes a
particular evaluation environment and fitness function, and
a domain is a (possibly infinite) set of tasks sharing signif-
icant underlying structure and for which the same BC can
be applied. As an example, consider the canonical novelty
search domain: robot maze navigation. Given a maze (task),
the goal is to find a controller that can lead a robot from
the starting position to the goal in a limited time frame.
Because of this time constraint, specialized controllers are
required to solve di↵erent mazes.

The maze domain is a simple (and commonly used) proxy
that captures the general tendency of domains to become
more deceptive as they become more complex. For exam-
ple, in circuitous mazes, minimizing the distance to the goal
directly may cause convergence to a cul-de-sac, from which
reaching the goal requires first traveling further away from
it. To avoid such deception, fitness functions specialized to
particular mazes can be constructed to guide evolution gen-
tly along the correct path. However, such specialized fitness
functions are unlikely to generalize across broad classes of
mazes, e.g., ones in which correct paths have di↵erent char-
acteristics. On the other hand, the standard hand-coded BC
for this domain, i.e., the final (x, y) position, is more robust
across mazes, because it reflects exploration, and thus can
be used to avoid deception in mazes. Applications in which
the same BC can be applied across many related tasks are
common in areas such as robot control [7, 8, 14], content
generation [16, 18, 22], and classification [12, 26].

However, deriving an e↵ective generalizable BC can be
di�cult. In most previous work, the experimenter provides
a hand-coded BC specialized for the target task. Domain-
agnostic generic BCs (e.g., applicable to any evolutionary
robotics domain) have also been proposed [6, 7, 9, 20], but
their performance varies by how well the assumptions un-
derlying them hold in a particular task [23]. Interestingly,
little work has focused on the problem of learning BCs [8,
18, 22]. This paper proposes a framework and methods for
such learning. The goal is to perform well in a domain, i.e., to
automatically discover which are the most important dimen-
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sions of behavioral diversity across its many tasks. Behavior
samples produced by a default BC on a set of training tasks
are used to learn a new BC, which then generalizes well
across all tasks in the domain. This learned BC is validated
on a set of test tasks drawn from the same domain.

Experiments combine these BC-learning techniques with
novelty search [13, 14], and evaluate them across a range
of increasingly-complex and deceptive many-task maze do-
mains. The results show that the performance advantage of
learned BCs over both hand-coded and generic BCs, as well
as over fitness-based search, increases with the di�culty of
the domain. Thus, this paper provides evidence that learn-
ing BCs is possible, useful, and aids in scaling novelty search
to more complex real-world problems.

2. BACKGROUND
The approach in this paper builds on prior research in

novelty search, generic BCs, and many-task domains.

2.1 Novelty Search
Novelty search [13, 14] is an EA which is not driven by

optimization towards a fixed objective, but instead rewards
individuals for demonstrating behavioral novelty. Such nov-
elty is measured by comparing an individual’s behavior both
to other individuals in the current population and to those
in an archive of past behaviors. The idea is that such nov-
elty search, although less focused, may have a better chance
of discovering complex and interesting behaviors, some of
which may be solutions to the problem. Following previous
precedent [14], in the implementation used here each evalu-
ated individual is added to the archive with a fixed probabil-
ity p. Additionally, to reduce computational cost and prevent
oversaturation of regions in the behavior space, archives have
a fixed maximum size. If the archive reaches its maximum
size, new individuals added to the archive replace existing
members with uniform probability, so that the archive does
not contain only the most recently added behaviors.

Key to novelty search’s performance in a given domain is
the choice of BC. The BC is intimately connected to how
novelty is quantified, which is the average distance of an
individual’s behavior to the k nearest neighbor behaviors of
individuals in the population and archive. In most existing
work, ad-hoc behavior characterizations are used, i.e., the
BC is designed by the experimenter.

2.2 Generic Behavior Characterization
Generic BCs remove the need for expert domain knowl-

edge in BC design. While their generality enables easy appli-
cation to many domains, generality is also a liability: they
may not take into account key aspects of particular tasks
and domains. Several generic BCs have been introduced [7,
9, 20], with the conclusion that they were especially use-
ful in multi-objective approaches that combine behavioral
diversity with traditional objective-based fitness. One inter-
pretation is that such a multi-objective approach does not
require a nuanced sense of behavioral di↵erence because its
main aim is to encourage only enough diversity to prevent
complete convergence. However, pure diversity-driven search
may require more specialized ideas about behavior.

Most related to the approach proposed here, there is also
some initial research into combining or learning BCs. Meth-
ods for combining multiple BCs were explored [6]; randomly
switching between BCs improved performance over any sin-

gle BC. In the approach most similar to the one in this pa-
per, generic BCs were optimized through adapting a weight
vector by calculating the mutual information between fea-
tures and the given fitness function [8]. This weighting was
updated periodically throughout evolution on a single task,
not the many-task explored here; also, the approach re-
lied on high-level task features that may not be available
to an agent through its sensory-action space. The proposed
method seeks to address some of these shortcomings, focus-
ing on reducing the need for human domain knowledge or
prespecified high-level features.

2.3 Generative Many-task Domains
The motivation for the many-task approach to evaluating

evolutionary techniques is that tasks do not exist in a vac-
uum. Every task is drawn from some domain that includes
several somehow-related tasks, and the experience acquired
during evolution on one task can be leveraged to improve
evolution’s performance on future tasks. Illustrative exam-
ples of such domains include robots that learn to assemble
many distinct products [17]; agents that learn to play dif-
ferent video games on the same platform [1]; and human-
in-the-loop interactive evolution, in which solution quality
depends on the particular human providing feedback [27].

Generative domains such as NK-landscapes are particu-
larly useful because they can provide diverse challenges (and
deception) across tasks [28]. In sequential decision-making,
the many-task perspective has been suggested as a way to
better validate approaches, preventing over-optimization of
algorithms to a small set of tasks [2]. Generative domains
have also been used for transfer in reinforcement learning
[11]. For a given domain, the generative model that pro-
duces tasks may not be known explicitly. More realistically,
one may only have access to a subset of tasks drawn from the
model. In such cases, an approximate generative model can
be inferred over which to optimize, or optimization can sim-
ply be performed over this fixed collection of tasks. As in the
real world, one may not be able to choose which tasks are
presented. However, for evaluating many-task approaches,
explicit generative models are convenient. That way, a su�-
ciently large number of diverse tasks can be drawn for train-
ing and testing to clarify how the approach performs. The
generative maze domains in this paper are based on those
used to study the scalability of novelty search [14].

3. APPROACH
This section first introduces a many-task framework for

learning BCs, and a new generic BC suited to this frame-
work. Then, based on a formalization of BC optimality, two
heuristics are introduced for learning BCs.

3.1 Many-task BC Learning Framework
Applying diversity-driven algorithms across a domain re-

quires the specification of a BC, which a↵ects the quality
of search. This section describes a framework for learning
e↵ective BCs. The idea is that a set of training tasks can
be leveraged to learn an e↵ective BC, which can then be
applied to any further tasks drawn from the domain. While
such learning requires computation, the benefit is that a new
BC must only be derived once per domain. In this way, if a
large number of tasks are to be solved, the computational
cost of learning becomes negligible in the limit.
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Figure 1: The batch version of the many-task framework for learning specialized BCs. A default EA is applied
to the training tasks, which generates many (Behavior, F itness) pairs. A subset of such pairs is fed into the
BC learner, which produces a BC specialized to the domain. This new BC is then evaluated on a set of test
tasks, drawn either from the same (or a related) domain. Note that the BC learner observes only the results
of the EA’s interaction with the environment, i.e., it has no knowledge about the internals of the EA.

There are two ways to formulate BC learning: (1) an in-
cremental version where the learned BC is updated after ex-
posure to each task, and (2) a batch version, where the BC
is learned only once based on a single set of training tasks.
Only the batch version, which is the clearer setting for anal-
ysis, is investigated in this paper, and is depicted in Figure 1.
In this framework there is a default EA and an adapted EA,
which di↵er only in the BC that is used. The default EA is
run on training tasks using some existing BC, called the un-
derlying BC, and (Behavior, F itness) pairs from evaluated
individuals are collected by the BC learner (in practice, only
a subset of these pairs may be used). The BC learner then
uses this information to produce a new BC. The new BC is
used by the adapted EA, which is applied to the test tasks.
Even if the training and test tasks are drawn from di↵er-
ent distributions, the adapted EA with the new BC may
still outperform the default EA if there is some structural
relation. Potential measures of test set performance include
averaging champion fitness across the test tasks, or the pro-
portion of tasks on which a success threshold is achieved.
Note that although novelty search is applied here as the un-
derlying EA, this framework can be applied to any algorithm
in which BCs guide search, e.g., MAP-elites [3, 22].

3.2 Stochastic Policy Induction
The BC learning framework described above requires an

underlying BC that provides a set of base features that
are consistent across tasks within a domain. This enables a
weighting learned over the features of the underlying BC (see
Section 3.4) to exploit this consistency. In theory, generic
BCs are ideal candidates for underlying BCs, because by
construction they require minimal domain-specific knowl-
edge. However, most previously introduced generic BCs, like
action history [9] and metrics over all task objects [8], re-
sult in features with di↵erent meanings when environmental
components or evaluation lengths varies across tasks.

Stochastic Policy Induction for Relating Inter-task Tra-
jectories (spirit) addresses this shortcoming by providing

an interpretable generic BC that is consistent across tasks
within a domain. The main idea is that the BC produces
the stochastic policy of a given form most likely to repro-
duce the state-action trajectory of an individual. The BC is a
function only of an individual’s sensory-action trajectory, so
it does not rely on any privileged experimenter knowledge.
In this paper, the simplest form of spirit is used, termed
spirit

o

. With spirit

o

, each element in a behavior vector
represents the probability of the agent taking a particular
action in a particular state. In higher-dimensional and con-
tinuous domains it may be helpful to use a more complex
form of spirit that can represent more expressive and com-
pact policies, e.g., via decision trees, FSMs, or fuzzy systems.
For these more complex representations, a suitable blueprint
of a policy would be learned to maintain inter-task consis-
tency. For spirit

o

, such structure learning is unnecessary.
Suppose {s0, ..., sn�1} is the set of possible sensory states

in the domain, {a0, ..., am�1} is the set of possible actions,
and ⌧ = ((s⌧0 , a

⌧

0) = ⌧0, ..., ⌧t) is the agent’s sensory-action
trajectory recorded during evaluation. spirit

o

induces a be-
havior characterization BC

o

, such that BC
o

(⌧) produces a
length nm vector describing a Markovian approximation of
the agent’s policy. The vector enumerates for each sensor-
action pair (s

j

, a

k

) the proportion of times the agent took
action a

k

when in sensory-state s

j

. More precisely,

BC
o

(⌧)[jn+ k] =

( |{i : ⌧i=(sj ,ak)}|
|
S

a{i : ⌧i=(sj ,a)}|
if 9 a : (s

j

, a) 2 ⌧,

1
m

otherwise.

Thus, if a possible sensory state is never encountered by an
agent during its lifetime, actions from that state are assumed
to have uniform probability. Euclidean distance is used to
compare behaviors produced by BC

o

. Note that spirit

o

is
similar to a previous generic BC method based on state
counts [6], but with the advantage that it encodes an actual
policy, providing an interpretable notion of what the agent
does. This enables clearer comparison across tasks with dif-
ferent environmental components and evaluation lengths.
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Figure 2: A desirable exploration pattern for a
behavior-driven evolutionary process. Area I is the
space of initial behaviors (i.e., those found in the ini-
tial population) achievable in the domain. Area S is
the potentially disconnected space of behaviors that
each yield success on at least one task in the domain.
Informally, S-optimal behavior exploration may be
achieved by discovering stepping stones from I to S

and then exploring S as quickly as possible.

3.3 Optimal BCs and Exploring the Space of
Success

This section proposes one possible formulation of BC op-
timality, motivating the heuristics proposed in Section 3.4
that intuitively target this definition.

The goal of BC learning is to find a BC that maximizes
some notion of performance for a given EA in a given do-
main. In this paper, optimality is defined in terms of suc-
cess in the many-task setting. An EA is deemed successful
on a particular task if it evolves an individual meeting the
domain-specific criteria for success, e.g., reaches a goal or
crosses a specified fitness score threshold.

Definition 3.1. Let D be a domain and A an algorithm
parameterized only by a behavior characterization B. B is S-
optimal i↵ it maximizes the likelihood of A being successful
on a task drawn randomly from the generative model of D.

One way to view an S-optimal BC is one that enables an
EA to most quickly cover a set S of behaviors, where for
each task t 2 D, there exists s 2 S such that s implies
success in t with high likelihood. Suppose I is the set of be-
haviors of individuals from the initial population of A across
all tasks in D for which A can achieve success. Then intu-
itively an S-optimal BC will guide the evolutionary process
from I to S, and to explore S fully, as e�ciently as possible
(Figure 2). If S is relatively small compared to the entire
space of underlying behaviors, a search for novelty that only
explores S, and does so e↵ectively, should be more e�cient
than search exploring the entire underlying behavior space
indiscriminately. This observation leads to practical heuris-
tics for learning BCs, which are discussed next.

3.4 BC Learning Heuristics
In this section two distinct learning heuristics are intro-

duced, situated within the many-task BC learning frame-
work. Each heuristic takes a di↵erent perspective on how
successful individuals can be e�ciently found for any task.
The first, i2s, motivates evolution to progress from the space

of initial behaviors I to the space of successful behaviors S,
by focusing exploration within the dimensions of behaviors
for which those in S vary most from those in I. The second,
xs, motivates evolution to e�ciently explore S itself, by fo-
cusing exploration within the dimensions of behavior vary-
ing most within S. Both i2s and xs are are implemented by
applying a weighting to the features of the underlying BC.

Let I be a set of initial behaviors from successful runs,
and S be a set of successful behaviors, where all such behav-
iors are collected during the training phase. Some underlying
BC (see Section 3.1) produces these behaviors via a function
f : X 7! Rl, where each x 2 X contains the relevant infor-
mation about an agent’s interaction in its environment (e.g.,
for spirit

o

, X is the set of all possible sensory-action his-
tories). The input to each BC learner is the pair (I,S); the
output is a weight vector w 2 Rl, which states the learned
behavioral importance of each feature. The vector w induces
a new BC computed as w� f(x), where � is the Hadamard
product, with resulting behaviors compared via Euclidean
distance. Note that these methods assume the features of
the underlying BC are normalized.

Let i be the mean over all i 2 I, and s be the mean
over all s 2 S. i2s emphasizes features that di↵er most be-
tween successful behaviors and initial behaviors; the idea is
that rewarding exploration along those features will gener-
ate stepping stones that lead from I to S. So, for i2s, w is
computed by

w[k] =
1
|S|

X

s2S

|s[k]� i[k]|�,

where � controls how much stronger features are strength-
ened over weaker ones. � = 0 implies a uniform w, i.e., the
underlying BC is completely preserved. Only initial behav-
iors i from successful runs are included in I, because this
implies S is reachable from i. On the other hand, xs empha-
sizes the features that vary most within the space of success,
to facilitate e�cient exploration of S. So, for xs, replacing i

with s, w is computed by

w[k] =
1
|S|

X

s2S

|s[k]� s[k]|�.

When � = 2, xs yields the variance of each feature within
S. xs characterizes S more accurately than i2s, so it should
enable more e�cient exploration of S when individuals with
behaviors in S can be sampled. However, this advantage may
be diminished when it is di�cult to sample from S directly,
e.g., when I and S are non-overlapping. Using spirit

o

as
the underlying BC (see Section 3.2), the complete learning
pipelines spirit

i2s

and spirit

xs

are evaluated empirically in
the next section.

4. EXPERIMENTS
The learning system described in Section 3 is applied to a

range of generative versions of the canonical deceptive maze
domain [13, 14, 15], to determine which of the heuristics are
most e↵ective, and on what types of problems.

4.1 Generative Maze Domains
Variants of maze domains have been the canonical testbed

for novelty search since its inception [13, 15, 20, 23]. For
this reason, a variety of generative maze domains, similar to
those used by Lehman and Stanley [15], are explored here. In
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Figure 3: Examples of randomly generated mazes that illustrate the challenges that can arise in each domain:
(a) Simple maze with complexity 38; (b) Complex Open maze with complexity 97; (c) Simple Open Forest
maze with complexity 64 and ptree = 0.25, with nearest trees shown. The triangle in the bottom left of each
maze shows the agent’s starting position and orientation, and the star indicates the location of the goal. Each
maze instantiates several local optima for objective-based search, but the higher-complexity Open mazes are
more challenging, with several of their local optima residing outside of the maze. The Open Forest maze can
also hinder generic approaches to novelty search, because it includes diverse distracting stimuli.

the basic setting, the agent has ten binary sensors: six local
wall sensors and four pie slice goal sensors. A goal sensor
fires when the goal falls within its 90� cone; each goal sensor
is centered in a di↵erent cardinal direction. The agent has
three possible actions: turn 90� left, turn 90� right, and move
forward one unit (look ahead to Figure 5 for sample sensor-
action pairs). The agent acts until either it occupies the same
cell as the goal (which counts as success in this domain) or
the maximum number of steps (200) is exhausted.

Each maze domain’s generative model produces mazes by
recursive division [24]. In this paper, all mazes are 20 cells ⇥
20 cells with five internal walls. Each model is parameterized
based on the environmental features that its mazes require.
One feature is complexity, which is defined as the length
of a shortest path from the agent starting position to the
goal, and is correlated with deception [15]. If a generative
model has a minimum complexity requirement, then mazes
produced with lower complexity are discarded. A model pro-
duces Simple mazes if there is no such requirement; it pro-
duces Complex mazes when the minimum complexity is 80.
A second feature is whether or not mazes are open. When a
model produces Open mazes, the outer walls of the lower left
chamber are removed. Open mazes create additional di�cul-
ties, as the agent is free to explore the infinite plane, which
can complicate search with a naive BC [14].

As a final feature, the maze model is extended to support
Forest mazes. For a Forest maze, every cell distance at least
1 unit away from the 20 ⇥ 20 cell box in which the maze is
situated has probability ptree of being occupied by a tree. An
agent in a Forest maze is augmented with six sensors equiv-
alent to the local wall sensors, except they detect trees in-
stead. Because wall and forest sensors are distinct, an agent
can discriminate between the forest and the maze, which
aids in navigation. As with walls, the agent cannot occupy
the same cell as a tree, i.e., executing forward does nothing
when a tree is in front of the agent. Similar to a previous
generative domain [11] used in reinforcement learning, the
Open Forest maze setting is challenging for novelty search,
and for generic BCs in particular, because it adds distract-
ing sensory and spacial exploration possibilities which are
unrelated to solving the task. Figure 3 shows three sample

generated mazes. All agents begin in the lower left corner
facing North. For Forest mazes, the goal is randomly placed
within the maze; for all other mazes, it is always located in
the upper right corner. In the experiments, ptree = 0.25.

4.2 Experimental Setup
The underlying EA for novelty and objective-based search

in the experiments is the Direct Encoding of Neural Net-
works (DNN) neuroevolution algorithm [19, 20, 22], which
generates neural network agent controllers, and has been
previously applied to work exploring BCs. DNN is a simpli-
fied version of the popular NEAT algorithm [25]. The imple-
mentation in this paper is based on that specified by Mouret
and Doncieux [19] (See the Appendix for settings).

In each BC learning setup, training data was first gener-
ated from a source domain and used to learn BCs that were
evaluated in a target domain. BCs were tested in six target
domains from Section 4.1: Simple, Complex, Simple Open,
Complex Open, Simple Open Forest, and Complex Open
Forest. For all target domains without trees, the source do-
main was Complex. For Forest target domains, two source
domains were tried: Simple Forest to test the ability to ig-
nore novel sensor readings, and Simple Open Forest. Thus,
the Forest experiments test the approaches’ ability to pro-
duce BCs that generalize to domains with higher complexity.

Novelty search was run with spirit

o

as its BC on tasks
drawn from source domains until a substantial amount of
training data was collected. If success was achieved within
the limit of 10,000 evaluations, then the behavior of the first
individual evaluated was added to the set of initial behav-
iors I, and the behavior of the successful individual was
added to the set of successful behaviors S. Then, from the
pair (I,S), spirit

i2s

and spirit

xs

each output a new BC,
which was evaluated in target domains to test performance
and generalizability. 20,649 initial and successful behaviors
were collected from the Complex source domain; 3,836 from
Simple Forest; and 2,211 from Simple Open Forest.

spirit

i2s

and spirit

xs

setups were compared against sev-
eral baselines: a traditional objective-based search with no
novelty component (as in most EA’s); novelty search with
the hand-coded BC (final (x, y) location, with Euclidean dis-



Figure 4: Cumulative proportion of weight by fea-
ture rank for the top 500 features of weight vectors
produced by spirit

i2s

and spirit
xs

in the experiments
from the Complex domain, for � 2 {1, 8}. In con-
trast to the uniform weights of spirit

o

, in the learned
weight vectors most of the weight is concentrated in
only the top couple hundred features.

tance metric); novelty search with action history BC (with
a Hamming distance metric), which has been found to be
a promising generic BC [9]; and spirit

o

. Each setup was
evaluated on 5,000 test tasks for each target domain (except
spirit

o

in Complex Open Forest, which was only evaluated
on 959 test tasks due to computational time constraints).

4.3 Results and Analysis
The distributions of weights in the weight vectors learned

by spirit

i2s

and spirit

xs

via samples from the Complex do-
main are depicted in Figure 4. The BC learning techniques
concentrate the mass of the weight vector; that is, relatively
few features take up most of the weight, especially when � is
high. In all performance tests � = 8, and preliminary tests
show robustness to changes to � 2 [1, 10] for spirit

i2s

.
It is also informative to look at the features deemed most

and least important by BC learners to better understand
what these heuristics are accentuating. The strongest and
weakest features for spirit

i2s

from Complex mazes are de-
picted in Figure 5. These features generally match the intu-
ition for what should be learned. In particular, the majority
of the strongest features are sensor-action pairs that demon-
strate overcoming deception, i.e., they go against the greedy
strategy. Thus, exploring these features may encourage solv-
ing more complex mazes. On the other hand, the majority of
the weakest features need not be explored. All the weakest
features, except the eighth, depict sensor-action pairs that
cannot occur in a shortest solving trajectory, i.e., their ex-
ploration is intuitively ine�cient. In this way, these features
coincide with the intuition of an e↵ective BC learner.
Quantitatively, BC learning improves performance in all

six domains, with spirit

i2s

always outperforming spirit

xs

.
Figure 6 compares the success rate of spirit

i2s

and spirit

xs

with the baseline methods across the six domains. The most
dramatic improvements are in the Forest domains, though
spirit

i2s

outperforms all other methods in all cases. In tar-
get domains without trees, the strongest improvement for
spirit

i2s

is in the most di�cult domain: Complex Open.
This result further validates the idea that BC learning will
be most useful in complex scenarios. It is also interesting

that in the domains without trees, spirit
o

significantly out-
performs all other baselines, highlighting its usefulness as
a generic BC. On the other hand, in the Forest domains,
spirit

o

is not so successful; it performs more similarly to
the other baselines than to the top BC learning approaches.

As expected, in both Forest domains, each BC learning
approach performs significantly better when trained with
closed maze samples. With a closed maze, there is no ob-
servation of trees, so trees are completely ignored in the
test tasks, making the new BC much more e�cient than the
underlying BC. In Open Forest training, trees may be en-
countered, but successful behaviors should contain few tree
observations, resulting in a similar but somewhat attenuated
e↵ect. In Forest domains, BC learning successfully captures
the idea that additional distractor sensors should not make
any task more di�cult. This idea of including sensors or-
thogonal to a task often arises in robot learning, as many
sensors may have utility in some domains but not others.

5. DISCUSSION AND FUTURE WORK
The BC learning techniques in this paper used samples

only of initial and successful behaviors to create new BCs;
however, intermediate behaviors could also be leveraged for
learning dynamic BCs [6] that change during evolution. For
example, ancestral histories of successful individuals could
be analyzed to derive temporal sequences of BCs more ef-
fective at guiding search into and through the space of suc-
cessful behaviors. In the static setting i2s dominated xs, but
such dynamic BCs could exploit synergies between i2s and
xs, e.g., to initially explore using i2s and then to switch later
in evolution to xs. This idea reflects the notion that i2s and
xs capture complementary aspects of behavior space explo-
ration. Another direction is to learn more objective-oriented
fitness features, like those in shaping approaches [4, 5, 11],
to complement the learned BC with optimization pressure.
Shaping approaches have also shown how training on tasks
that are easier than the target task may improve e�ciency.
The fact that Simple Forest training improved Complex For-
est performance is encouraging in that training data did not
have to be collected from the more di�cult domain.

One critical direction for future work is extending BC
learning to continuous and high-dimensional domains. A li-
ability of the spirit

o

representation is that its size grows
exponentially in the number of possible state-action pairs.
For this reason, more sophisticated representations, such as
those used in reinforcement learning [10], are necessary for
higher-dimensional contexts. To keep the dimensionality of
spirit low while still retaining enough relevant behavioral
information, more compact policy representations such as
decision trees or fuzzy systems can be used. Complementar-
ily, spirit could be combined with recent advances in deep
learning to enable learning higher-level behavioral features.
One approach is to train an autoencoder (or other unsuper-
vised learning method) from spirit representations of be-
haviors. The idea is that bottleneck layers of the autoencoder
might encode a compressed space of relevant behaviors.

An advantage of the many-task framework is that it en-
ables skirting the challenges of particularly di�cult train-
ing tasks, because learning features from tasks more easily
solved with the default BC may later generalize to enable
solving more di�cult tasks in the test set. In contrast, in the
single-task case the default BC may be so ill-suited that so-
lutions are never evolved, preventing at least the BC learners



.5079 .4198 .4090.4248.4410 .4021.4359 .4135.4569 .4227

.00002048 .00004096 .00004096 .00008191.00002048 .00004096 .00004096 .00004096 .00004096 .00004096

Figure 5: The strongest and the weakest features in the weight vector learned by spirit
i2s

via samples from
the Complex source domain, along with corresponding weights (� = 1). Grey squares indicate active local
wall sensors; the star indicates directions of active pie slice goal sensors; the arrow on the tip of the agent
indicates the action taken. (top row) Top ten strongest features. Each of these features, except the sixth and
eighth, show a sensor-action pair whose exploration corresponds to solving deceptive tasks. (bottom row) Top
ten weakest non-zero features. Except the eighth, each of these features show a state-action pair that cannot
occur in a shortest solving trajectory, i.e., their exploration is intuitively ine�cient. These results coincide
with expectations of what kinds of features a BC learner should be emphasizing and deemphasizing.

in this paper from being e↵ective. A deep learning approach
more suited to the single-task case would be to, during evo-
lution, train an explicit model of the fitness landscape from
spirit representations; the high-level features encoded by
the layer preceding the regression output could also encode
a reduced but relevant space of behaviors.

6. CONCLUSION
Motivated by reducing how much human knowledge is

needed to apply diversity-driven algorithms to new prob-
lems, this paper introduces a general framework for learn-
ing BCs automatically. The experiments combine two ap-
proaches for BC learning with the novelty search algorithm,
which enables applying novelty search more e↵ectively in a
general setting. The results show that such BC learning can
outperform hand-designed BCs and completely generic BCs,
especially when tasks become increasingly complex. In this
way, this paper demonstrates the potential for BC learning
to be an ingredient in e↵ective automatic problem solving.

Aknowledgments. We would like to thank Alexander Bray-
lan and the reviewers for their useful feedback. This research
was supported in part by NSF grant DBI-0939454, NIH grant
1R01GM105042, and an NPSC fellowship sponsored by NSA.

7. REFERENCES
[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling.

The arcade learning environment: An evaluation platform
for general agents. JAIR, 47:253–279, 2013.

[2] O. Coleman, A. Blair, and J. Clune. Automated generation
of environments to test the general learning capabilities of
ai agents. In Proc. of GECCO, pages 161–168, 2014.

[3] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots
that can adapt like animals. Nature, 521(7553):503–507,
2015.

[4] S. Doncieux. Transfer learning for direct policy search: A
reward shaping approach. In Proc. of ICDL, pages 1–6,
2013.

[5] S. Doncieux. Knowledge extraction from learning traces in
continuous domains. In AAAI Fall Symposium Series, 2014.

[6] S. Doncieux and J.-B. Mouret. Behavioral diversity with
multiple behavioral distances. In Proc. of CEC, pages
1427–1434, 2013.

[7] J. Gomes and A. L. Christensen. Generic behaviour
similarity measures for evolutionary swarm robotics. In
Proc. of GECCO, pages 199–120, 2009.

[8] J. Gomes, P. Mariano, and A. L. Christensen. Systematic
derivation of behaviour characterisations in evolutionary
robotics. CoRR, abs/1407.0577, 2014.

[9] F. J. Gomez. Sustaining diversity using behavioral
information distance. In Proc. of GECCO, pages 113–120,
2009.

[10] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement
learning in robotics: A survey. International Journal of
Robotics Research, 32(11):1238–1274, 2013.

[11] G. Konidaris, I. Scheidwasser, and A. G. Barto. Transfer in
reinforcement learning via shared features. JMLR,
13(1):1333–1371, 2012.

[12] E. Laredo, L. Trujillo, and Y. Martinez. Searching for novel
classifiers. In Proc. of Evostar, pages 145–156, 2013.

[13] J. Lehman and K. O. Stanley. Exploiting open-endedness
to solve problems through the search for novelty. In Proc.
of ALIFE, pages 329–336, 2008.

[14] J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone.
Evolutionary Computation, 19(2):189–223, 2011.

[15] J. Lehman and K. O. Stanley. Novelty search and the
problem with objectives. GP Theory and Practice IX,
pages 37–56, 2011.

[16] J. Lehman and K. O. Stanley. Beyond open-endedness:
Quantifying impressiveness. In Proc. of ALIFE, pages
75–82, 2012.

[17] G. Levitin, J. Rubinovitz, and B. Schnits. A genetic
algorithm for robotic assembly line balancing. Euro. Journ.
of O. R., 168(3):811–825, 2006.

[18] A. Liapis, H. P. Martinez, J. Togelius, and G. N.
Tannakakis. Transforming exploratory creativity with
delenox. In Proc. of ICCC, pages 56–63, 2013.

[19] J.-B. Mouret and S. Doncieux. Using behavioral



Figure 6: Learning curves comparing learned BCs to baselines in six models of the maze domain. Each line
indicates percent solved of 5,000 test tasks (except only 959 for spirit

o

in Complex Open Forest due to time
constraints), and the shaded area around them indicates standard error (very small due to large sample size).
The spirit

i2s

method outperforms all other methods in each domain; its advantage scales with the di�culty
of the domain. The most striking improvement is in Complex Open Forest, suggesting that BC learning will
be most useful in more complex domains.

exploration objectives to solve deceptive problems in
neuro-evolution. In Proc. of GECCO, pages 627–634, 2009.

[20] J.-B. Mouret and S. Doncieux. Encouraging behavioral
diversity in evolutionary robotics: An empirical study.
Evolutionary Computation, 20(1):91–133, 2012.

[21] A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness
functions in evolutionary robotics: A survey and analysis.
Robotics and Autonomous Systems, 57(4):345–370, 2009.

[22] A. Nguyen and J. Clune. Innovation engines: Automated
creativity and improved stochastic optimization via deep
learning. In Proc. of GECCO, pages 959–966, 2015.

[23] J. K. Pugh, L. B. Soros, P. A. Szerlip, and K. O. Stanley.
Confronting the challenge of quality diversity. In Proc. of
GECCO, pages 967–974, 2015.

[24] A. M. Reynolds. Maze-solving by chemotaxis. Physical
Review E, 81(6), 2010.

[25] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[26] P. A. Szerlip, G. Morse, J. K. Pugh, and K. O. Stanley.
Unsupervised feature learning through divergent
discriminative feature accumulation. In Proc. of AAAI,
pages 2979–2985, 2015.

[27] H. Takagi. Interactive evolutionary computation: Fusion of
the capabilities of ec optimization and human evaluation.
Proc. of the IEEE, 89(9):1275–1296, 2001.

[28] D. Whitley. Mk landscapes, nk landscapes and max-ksat: A
proof that the only challenging problems are deceptive. In
Proc. of GECCO, pages 927–934, 2015.

APPENDIX
DNN Parameters. pop. size, 100; parents per gen.: 25; children
per parent: 4; max evaluations: 10,000; add connection rate: 0.15;
remove connection rate: 0.05; add node rate: 0.05; remove node
rate: 0.05; min/max connection weight: -5.0/5.0; connection mu-
tation rate: 0.1; connection mutation change range: [-1,1] uniform.
Novelty Search Parameters. prob. add individual to archive:
0.01; archive size: 1,000; archive replace function: random; k: 15.


