3 research outputs found
A reduced panel of eight genes (ATM, SF3B1, NOTCH1, BIRC3, XPO1, MYD88, TNFAIP3, and TP53) as an estimator of the tumor mutational burden in chronic lymphocytic leukemia
International audienceIntroduction: Mutational complexity or tumor mutational burden (TMB) influences the course of chronic lymphocytic leukemia (CLL). However, this information is not routinely used because TMB is usually obtained from whole genome or exome, or from large gene panel highâthroughput sequencing.Methods: Here, we used the CâHarrel concordance index to determine the minimum panel of genes for which mutations predict treatmentâfree survival (TFS) as well as large resequencing panels.Results: An eight gene estimator was defined encompassing ATM, SF3B1, NOTCH1, BIRC3, XPO1, MYD88, TNFAIP3, and TP53. TMB estimated from either a large panel of genes or the eight gene estimator was increased in treated patients or in those with a short TFS (6 months). Strikingly, the eight gene estimator was also highly informative for patients with Binet stage A CLL or with a good prognosis karyotype.Conclusion: These results suggest that the eight gene estimator, that is easily achievable by highâthroughput resequencing, brings robust and valuable information that predicts evolution of untreated patients at diagnosis better than any other parameter
LAIR1, an ITIM-Containing Receptor Involved in Immune Disorders and in Hematological Neoplasms
Leukocyte-associated immunoglobulin (Ig)-like receptor 1 (LAIR1, CD305) belongs to the family of immune-inhibitory receptors and is widely expressed on hematopoietic mature cells, particularly on immune cells. Four different types of ligands of LAIR1 have been described, including collagens, suggesting a potential immune-regulatory function on the extracellular matrix. By modulating cytokine secretion and cellular functions, LAIR1 displays distinct patterns of expression among NK cell and T/B lymphocyte subsets during their differentiation and cellular activation and plays a major negative immunoregulatory role. Beyond its implications in physiology, the activity of LAIR1 can be inappropriately involved in various autoimmune or inflammatory disorders and has been implicated in cancer physiopathology, including hematological neoplasms. Its action as an inhibitory receptor can result in the dysregulation of immune cellular responses and in immune escape within the tumor microenvironment. Furthermore, when expressed by tumor cells, LAIR1 can modulate their proliferation or invasion properties, with contradictory pro- or anti-tumoral effects depending on tumor type. In this review, we will focus on its role in normal physiological conditions, as well as during pathological situations, including hematological malignancies. We will also discuss potential therapeutic strategies targeting LAIR1 for the treatment of various autoimmune diseases and cancer settings