49 research outputs found

    State of art fusion-finder algorithms are suitable to detect transcription-induced chimeras in normal tissues?

    Get PDF
    BACKGROUND: RNA-seq has the potential to discover genes created by chromosomal rearrangements. Fusion genes, also known as "chimeras", are formed by the breakage and re-joining of two different chromosomes. It is known that chimeras have been implicated in the development of cancer. Few publications in the past showed the presence of fusion events also in normal tissue, but with very limited overlaps between their results. More recently, two fusion genes in normal tissues were detected using both RNA-seq and protein data. Due to heterogeneous results in identifying chimeras in normal tissue, we decided to evaluate the efficacy of state of the art fusion finders in detecting chimeras in RNA-seq data from normal tissues. RESULTS: We compared the performance of six fusion-finder tools: FusionHunter, FusionMap, FusionFinder, MapSplice, deFuse and TopHat-fusion. To evaluate the sensitivity we used a synthetic dataset of fusion-products, called positive dataset; in these experiments FusionMap, FusionFinder, MapSplice, and TopHat-fusion are able to detect more than 78% of fusion genes. All tools were error prone with high variability among the tools, identifying some fusion genes not present in the synthetic dataset. To better investigate the false discovery chimera detection rate, synthetic datasets free of fusion-products, called negative datasets, were used. The negative datasets have different read lengths and quality scores, which allow detecting dependency of the tools on both these features. FusionMap, FusionFinder, mapSplice, deFuse and TopHat-fusion were error-prone. Only FusionHunter results were free of false positive. FusionMap gave the best compromise in terms of specificity in the negative dataset and of sensitivity in the positive dataset. CONCLUSIONS: We have observed a dependency of the tools on read length, quality score and on the number of reads supporting each chimera. Thus, it is important to carefully select the software on the basis of the structure of the RNA-seq data under analysis. Furthermore, the sensitivity of chimera detection tools does not seem to be sufficient to provide results consistent with those obtained in normal tissues on the basis of fusion events extracted from published data

    Current Use of Oral Anticoagulation Therapy in Elderly Patients with Atrial Fibrillation: Results from an Italian Multicenter Prospective Study-The ISNEP Study

    Get PDF
    Background: Atrial fibrillation (AF) is the most common heart arrhythmia, and its prevalence increases with age. Oral Anticoagulant Therapy (OAT) with non-vitamin K antagonist oral anticoagulants (NOACs) or vitamin K antagonists (VKAs) is essential to avoid thromboembolic events in AF. However, this treatment is associated with a high risk of bleeding and low adherence in elderly patients. Aim: The aim was to evaluate the real-world use of OAT in a population of patients aged >= 80 years in twenty-three Italian centers and to investigate the tolerance of and patient satisfaction with this therapy. Methods: The ISNEP Study is a multicenter cross-sectional study enrolling patients with AF and aged >= 80 years and treated with either NOACs or VKAs. A written questionnaire was administered to each patient to evaluate the adherence to and patient satisfaction with this therapy. Results: The study included 641 patients with a mean age of 85 (82-87) years. The use of NOACs was reported in 93.0% of cases, with the remaining 7.0% treated with VKAs. A history of stroke events was reported in five (11.1%) and one (0.2%) patients in the VKA and NOAC groups, respectively. The rate of referred ecchymosis/epistaxis was significantly higher in the VKA group compared to the NOAC group (p < 0.001). Patients receiving NOACs reported a substantial improvement in their quality of life compared to the VKA group. Conclusions: A small, but not negligible, proportion of elderly AF patients is still treated with VKAs. Patients treated with NOAC have a higher level of satisfaction with the therapy and complete adherence

    Characterization and dynamics of specific T cells against nucleophosmin-1 (NPM1)-mutated peptides in patients with NPM1-mutated acute myeloid leukemia

    Get PDF
    Nucleophosmin(NPM1)-mutated protein, a leukemia-specific antigen, represents an ideal target for AML immunotherapy. We investigated the dynamics of NPM1-mutated-specific T cells on PB and BM samples, collected from 31 adult NPM1-mutated AML patients throughout the disease course, and stimulated with mixtures of 18 short and long peptides (9-18mers), deriving from the complete C-terminal of the NPM1-mutated protein. Two 9-mer peptides, namely LAVEEVSLR and AVEEVSLRK (13.9-14.9), were identified as the most immunogenic epitopes. IFNγ-producing NPM1-mutated-specific T cells were observed by ELISPOT assay after stimulation with peptides 13.9-14.9 in 43/85 (50.6%) PB and 34/80 (42.5%) BM samples. An inverse correlation between MRD kinetics and anti-leukemic specific T cells was observed. Cytokine Secretion Assays allowed to predominantly and respectively identify Effector Memory and Central Memory T cells among IFNγ-producing and IL2-producing T cells. Moreover, NPM1-mutated-specific CTLs against primary leukemic blasts or PHA-blasts pulsed with different peptide pools could be expanded ex vivo from NPM1-mutated AML patients or primed in healthy donors. We describe the spontaneous appearance and persistence of NPM1-mutated-specific T cells, which may contribute to the maintenance of long-lasting remissions. Future studies are warranted to investigate the potential role of both autologous and allogeneic adoptive immunotherapy in NPM1-mutated AML patients

    Optimizing a Massive Parallel Sequencing Workflow for Quantitative miRNA Expression Analysis

    Get PDF
    BACKGROUND: Massive Parallel Sequencing methods (MPS) can extend and improve the knowledge obtained by conventional microarray technology, both for mRNAs and short non-coding RNAs, e.g. miRNAs. The processing methods used to extract and interpret the information are an important aspect of dealing with the vast amounts of data generated from short read sequencing. Although the number of computational tools for MPS data analysis is constantly growing, their strengths and weaknesses as part of a complex analytical pipe-line have not yet been well investigated. PRIMARY FINDINGS: A benchmark MPS miRNA dataset, resembling a situation in which miRNAs are spiked in biological replication experiments was assembled by merging a publicly available MPS spike-in miRNAs data set with MPS data derived from healthy donor peripheral blood mononuclear cells. Using this data set we observed that short reads counts estimation is strongly under estimated in case of duplicates miRNAs, if whole genome is used as reference. Furthermore, the sensitivity of miRNAs detection is strongly dependent by the primary tool used in the analysis. Within the six aligners tested, specifically devoted to miRNA detection, SHRiMP and MicroRazerS show the highest sensitivity. Differential expression estimation is quite efficient. Within the five tools investigated, two of them (DESseq, baySeq) show a very good specificity and sensitivity in the detection of differential expression. CONCLUSIONS: The results provided by our analysis allow the definition of a clear and simple analytical optimized workflow for miRNAs digital quantitative analysis
    corecore