109 research outputs found

    Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting

    Get PDF
    The blood–brain barrier (BBB) plays a fundamental role in protecting and maintaining the homeostasis of the brain. For this reason, drug delivery to the brain is much more difficult than that to other compartments of the body. In order to bypass or cross the BBB, many strategies have been developed: invasive techniques, such as temporary disruption of the BBB or direct intraventricular and intracerebral administration of the drug, as well as noninvasive techniques. Preliminary results, reported in the large number of studies on the potential strategies for brain delivery, are encouraging, but it is far too early to draw any conclusion about the actual use of these therapeutic approaches. Among the most recent, but still pioneering, approaches related to the nasal mucosa properties, the permeabilization of the BBB via nasal mucosal engrafting can offer new potential opportunities. It should be emphasized that this surgical procedure is quite invasive, but the implication for patient outcome needs to be compared to the gold standard of direct intracranial injection, and evaluated whilst keeping in mind that central nervous system diseases and lysosomal storage diseases are chronic and severely debilitating and that up to now no therapy seems to be completely successful

    Design and Characterization of Glyceryl Monooleate-Nanostructures Containing Doxorubicin Hydrochloride

    Get PDF
    Glyceryl monooleate (GMO) is one of the most popular amphiphilic lipids, which, in the presence of dierent amounts of water and a proper amount of stabilizer, can promote the development of well defined, thermodynamically stable nanostructures, called lyotropic liquid crystal dispersions. The aim of this study is based on the design, characterization, and evaluation of the cytotoxicity of lyotropic liquid crystal nanostructures containing a model anticancer drug such as doxorubicin hydrochloride. The drug is eciently retained by the GMO nanosystems by a remote loading approach. The nanostructures prepared with dierent non-ionic surfactants (poloxamers and polysorbates) are characterized by dierent physico-chemical features as a function of several parameters, i.e., serum stability, temperature, and dierent pH values, as well as the amount of cryoprotectants used to obtain suitable freeze-dried systems. The nanostructures prepared with poloxamer 407 used as a stabilizer show an increased toxicity of the entrapped drug on breast cancer cell lines (MCF-7 and MDA-MB-231) due to their ability to sensitize multidrug-resistant (MDR) tumor cells through the inhibition of specific drug eux transporters. Moreover, the interaction between the nanostructures and the cells occurs after just a few hours, evidencing a huge cellular uptake of the nanosystems

    Development and In Vivo Evaluation of Multidrug Ultradeformable Vesicles for the Treatment of Skin Inflammation

    Get PDF
    The aim of this work was to evaluate the effect of two chemically different edge activators, i.e., Tween® 80 and sodium deoxycholate, on (i) the physical, mechanical, and biological properties of ultradeformable vesicles, and (ii) the administration of naproxen sodium-loaded multidrug ultradeformable vesicles for the transdermal route in order to obtain therapeutically meaningful drug concentrations in the target tissues and to potentiate its anti-inflammatory effect by association with the antioxidant drug idebenone. The results obtained in this investigation highlighted a synergistic action between naproxen and idebenone in the treatment of inflammatory disease with a more pronounced anti-inflammatory effect in multidrug ultradeformable vesicles compared to the commercial formulation of Naprosyn® gel. Systems made up of Tween® 80 appeared to be the most suitable in terms of percutaneous permeation and anti-inflammatory activity due to the greater deformability of these vesicles compared to multidrug ultradeformable vesicles with sodium deoxycholate. Our findings are very encouraging and suggest the use of these carriers in the topical treatment of inflammatory diseases

    Oleuropein-Laded Ufasomes Improve the Nutraceutical Efficacy

    Get PDF
    Ufasomes are unsaturated fatty acid liposomes made up of oleic and linoleic acids, natural components required in various biological processes. This kind of nanocarrier is characterized by a simple and dynamic structure and is able to improve the bioavailability of unsaturated fatty acids. The aim of this investigation was to evaluate ufasomes as natural compound delivery systems to deliver oleuropein and improve its antioxidant activity. Oleuropein is a phenolic compound mainly present in olives and olive oil, with several biological properties, such as the antioxidant activity. However, to improve their biological activity, antioxidant compounds should be able to cross cell membranes and uniformly incorporate in cells. Because of the great similarity between their constituents and cell membranes, ufasomes could be advantageous carriers for oleuropein delivery. The physico-chemical characteristics of ufasomes were investigated. A regular shape was shown by transmission electron microscopy studies, while the mean sizes were dependent on the ufasomes composition. In vitro studies highlighted that empty ufasomes did not lead to cell mortality at the tested concentrations and a good carrier internalization in CaCo-2 cells, further studies in vitro studies demonstrated that oleuropein-loaded ufasomes were able to enhance the antioxidant activity of the free active substance making this carrier a suitable one for nutraceutical application

    Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages

    Get PDF
    BACKGROUND: Oxidative stress has shown to contribute in the mechanisms underlying apoptotic cell death occuring in AIDS-dementia complex. Here we investigated the role of peroxynitrite in apoptosis occurring in astroglial cells incubated with supernatants of HIV-infected human primary macrophages (M/M). RESULTS: Flow cytometric analysis (FACS) of human cultured astrocytes shortly incubated with HIV-1-infected M/M supernatants showed apoptotic cell death, an effect accompanied by pronounced staining for nitrotyrosine (footprint of peroxynitrite) and by abnormal formation of malondialdehyde (MDA). Pretreatment of astrocytes with the peroxynitrite decomposition catalyst FeTMPS antagonized HIV-related astrocytic apoptosis, MDA formation and nitrotyrosine staining. CONCLUSIONS: Taken together, our results suggest that inibition of peroxynitrite leads to protection against peroxidative stress accompanying HIV-related apoptosis of astrocytes. Overall results support the role of peroxynitrite in HIV-related programmed death of astrocytes and suggest the use of peroxynitrite decomposition catalyst to counteract HIV-1-related neurological disorders

    LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy

    Get PDF
    Breast cancer, with around 2 million new cases in 2019, is the second most common cancer worldwide and the second leading cause of cancer death among females. The aim of this work is to prepare a targeting nanoparticle through the conjugation of LinTT1 peptide, a specific molecule targeting p32 protein overexpressed by breast cancer and cancer associated cells, on liposomes' surface. This approach increases the cytotoxic effects of doxorubicin (DOX) and sorafenib (SRF) co-loaded in therapeutic liposomes on both 2D and 3D breast cancer cellular models. The liposome functionalization leads to a higher interaction with 3D breast cancer spheroids than bare ones. Moreover, interaction studies between LinTT1-functionalized liposomes and M2 primary human macrophages show an internalization of 50% of the total nanovesicles that interact with these cells, while the other 50% results only associated to cell surface. This finding suggests the possibility to use the amount of associated liposomes to enrich the hypoxic tumor area, exploiting the ability of M2 macrophages to accumulate in the central core of tumor mass. These promising results highlight the potential use of DOX and SRF co-loaded LinTT1-functionalized liposomes as nanomedicines for the treatment of breast cancer, especially in triple negative cancer cells.Peer reviewe
    • …
    corecore