21 research outputs found

    A novel muscle protein located inside the terminal cisternae of the sarcoplasmic reticulum.

    Get PDF
    An immunofluorescence study of adult rat muscle tissues with a polyclonal antibody against the RGD-directed fibronectin receptor of Friend's erythroleukemia cells (alpha5beta1-integrin) unexpectedly revealed a pattern of intracellular antigen distribution. Western blotting analysis of rat and rabbit membrane fractions indicated that the antibody recognizes a 167-kDa protein expressed both in heart and in skeletal muscle (relative abundance: heart > slow muscle > fast muscle), but not in liver and kidney. The 167-kDa protein did not show altered electrophoretic mobility upon reduction and failed to bind several lectins, including wheat germ agglutinin. A study of its subcellular distribution in rabbit skeletal muscle revealed that the 167-kDa protein is mostly associated with the terminal cisternae of the sarcoplasmic reticulum (SR) and, to a smaller extent, with the sarcolemma, while it is absent in the longitudinal tubules of the SR. The 167-kDa protein is not an integral membrane protein since it can be extracted at pH >/=10. This protein can be proteolytically cleaved only in the presence of detergent, indicating that it resides on the luminal side of the SR. The 167-kDa protein could be resolved from the closely spaced sarcalumenin and histidine-rich protein by column chromatography followed by detergent dialysis and two-dimensional gel electrophoresis. The N terminus and the internal sequences did not match any known sequence in protein and DNA data bases, indicating that the 167-kDa protein is a novel muscle protein selectively localized to the SR. Integrins from rat kidney fibroblasts were not recognized by either (i) a polyclonal antiserum against the purified 167-kDa protein or (ii) the anti-alpha5beta1-integrin antiserum after affinity purification onto the 167-kDa protein. These data indicate that the 167-kDa protein is not immunologically cross-reactive with integrins, despite its reaction with a polyclonal anti-integrin antibody

    Ultrastructure of diaphragm from dystrophic α-sarcoglycan-null mice.

    No full text
    α-Sarcoglycan is a 50 kDa single-pass transmembrane glycoprotein exclusively expressed in striated muscle that, together with β-, γ-, and δ-sarcoglycan, forms a sub-complex at the muscle fibre cell membrane. The sarcoglycans are components of the dystrophin-associated glycoprotein (DAG) complex which forms a mechanical link between the intracellular cytoskeleton and extracellular matrix. The DAG complex function is to protect the muscle membrane from the stress of contractile activity and as a structure for the docking of signalling proteins. Genetic defects of DAG components cause muscular dystrophies. A lack or defects of α-sarcoglycan causes the severe type 2D limb girdle muscular dystrophy. α-Sarcoglycan-null (Sgca-null) mice develop progressive muscular dystrophy similar to the human disorder. This animal model was used in the present work for an ultrastructural study of diaphragm muscle. Diaphragm from Sgca-null mouse presents a clear dystrophic phenotype, with necrosis, regeneration, fibre hypertrophy and splitting, excess of collagen and fatty infiltration. Some abnormalities were also observed, such as centrally located nuclei of abnormal shape, fibres containing inclusion bodies within the contractile structure, and fibres with electron-dense material dispersed over almost the entire cell. Additionally, unusual interstitial cells of uncertain identity were detected within muscle fibres. The abnormal ultrastructure of the diaphragm from Sgca-null mice is discussed

    Ultrastructure of diaphragm from dystrophic alpha-sarcoglycan-null mice.

    No full text
    alpha-Sarcoglycan is a 50 kDa single-pass transmembrane glycoprotein exclusively expressed in striated muscle that, together with beta-, gamma-, and delta-sarcoglycan, forms a sub-complex at the muscle fibre cell membrane. The sarcoglycans are components of the dystrophin-associated glycoprotein (DAG) complex which forms a mechanical link between the intracellular cytoskeleton and extracellular matrix. The DAG complex function is to protect the muscle membrane from the stress of contractile activity and as a structure for the docking of signalling proteins. Genetic defects of DAG components cause muscular dystrophies. A lack or defects of alpha-sarcoglycan causes the severe type 2D limb girdle muscular dystrophy. alpha-Sarcoglycan-null (Sgca-null) mice develop progressive muscular dystrophy similar to the human disorder. This animal model was used in the present work for an ultrastructural study of diaphragm muscle. Diaphragm from Sgca-null mouse presents a clear dystrophic phenotype, with necrosis, regeneration, fibre hypertrophy and splitting, excess of collagen and fatty infiltration. Some abnormalities were also observed, such as centrally located nuclei of abnormal shape, fibres containing inclusion bodies within the contractile structure, and fibres with electron-dense material dispersed over almost the entire cell. Additionally, unusual interstitial cells of uncertain identity were detected within muscle fibres. The abnormal ultrastructure of the diaphragm from Sgca-null mice is discussed

    Ecto-ATPase activity of alpha-sarcoglycan (adhalin).

    No full text
    alpha-Sarcoglycan is a component of the sarcoglycan complex of dystrophin-associated proteins. Mutations of any of the sarcoglycan genes cause specific forms of muscular dystrophies, collectively termed sarcoglycanopathies. Importantly, a deficiency of any specific sarcoglycan affects the expression of the others. Thus, it appears that the lack of sarcoglycans deprives the muscle cell of an essential, yet unknown function. In the present study, we provide evidence for an ecto-ATPase activity of alpha-sarcoglycan. alpha-Sarcoglycan binds ATP in a Mg2+-dependent and Ca2+-independent manner. The binding is inhibited by 3'-O-(4-benzoyl)benzoyl ATP and ADP. Sequence analysis reveals the existence of a consensus site for nucleotide binding in the extracellular domain of the protein. An antibody against this sequence inhibits the binding of ATP. A dystrophin.dystrophin-associated protein preparation demonstrates a Mg-ATPase activity that is inhibited by the antibody but not by inhibitors of endo-ATPases. In addition, we demonstrate the presence in the sarcolemmal membrane of a P2X-type purinergic receptor. These data suggest that alpha-sarcoglycan may modulate the activity of P2X receptors by buffering the extracellular ATP concentration. The absence of alpha-sarcoglycan in sarcoglycanopathies leaves elevated the concentration of extracellular ATP and the persistent activation of P2X receptors, leading to intracellular Ca2+ overload and muscle fiber death

    COEXISTENCE OF 2 CALSEQUESTRIN ISOFORMS IN RABBIT SLOW-TWITCH SKELETAL-MUSCLE FIBERS

    Get PDF
    The cardiac and skeletal muscle isoforms of calsequestrin (CS), the low affinity, high capacity Ca2+ binding protein localized in the lumen of sarcoplasmic reticulum, are the products of two different genes (Fliegel, L., Leberer, E., Green, N.M. and MacLennan, D.H. (1982) FEBS Lett. 242, 297-300), and can be both purified from slow-twitch skeletal muscle of the rabbit (Damiani, E., Volpe, P. and Margreth, A. (1990) J. Muscle Res. Cell Motil. 11, 522-530). Here we show that both CS isoforms coexist in slow-twitch muscle fibers as indicated by indirect immunofluorescent staining of cryosections with affinity-purified antibodies specific for each CS isoform
    corecore