294 research outputs found

    Constraints on the formation mechanism of the planetary mass companion of 2MASS 1207334-393254

    Get PDF
    In this paper we discuss the nature and the possible formation scenarios of the companion of the brown dwarf 2MASS 1207334-393254. We initially discuss the basic physical properties of this object and conclude that, although from its absolute mass (5MJup5M_{\rm Jup}), it is a planetary object, in terms of its mass ratio qq and of its separation aa with respect to the primary brown dwarf, it is consistent with the statistical properties of binaries with higher primary mass. We then explore the possible formation mechanism for this object. We show that the standard planet formation mechanism of core accretion is far too slow to form this object within 10 Myr, the observed age of the system. On the other hand, the alternative mechanism of gravitational instability (proposed both in the context of planet and of binary formation) may, in principle, work and form a system with the observed properties.Comment: 5 pages, MNRAS in pres

    Ethical Obligations and the Dental Office Team

    Get PDF
    A hypothetical case of alleged sexual misconduct in a practice with high employee turnover and stress is analyzed by three experts. This case commentary examines the ethical role expectations of an office manager who is not directly involved but becomes aware of the activities. The commentators bring the perspectives of a dental hygienist. academic administrator. and attorney; a teacher of behavioral sciences in a dental school; and a general dentist with many years of practice experience

    The 0.03-10Mo mass function of young open clusters

    Full text link
    We report the present day mass functions (PDMFs) of 3 young open clusters over a mass range from 30 Jupiter masses to 10~\msunn. The PDMFs of the 3 clusters are remarkably similar, suggesting little impact of specific conditions (stellar density, metallicity, early dynamical evolution) on the mass distribution. Functional forms are provided to allow quantitative comparison with MFs derived in other environments.Comment: 6 pages, to appear in "IMF@50", Corbelli, Palla, Zinnecker ed

    The dependence of the sub-stellar IMF on the initial conditions for star formation

    Full text link
    Abridged: We have undertaken a series of hydrodynamical simulations of multiple star formation in small turbulent molecular clouds. Our goal is to determine the sensitivity of the properties of the resulting stars and brown dwarfs to variations in the initial conditions imposed. In this paper we report on the results obtained by applying two different initial turbulent velocity fields. The slope of the turbulent power-law spectrum alpha is set to -3 in half of the calculations and to -5 in the other half. We find that, whereas the stellar mass function seems to only be weakly dependent on the value of alpha, the sub-stellar mass function turns out to be more sensitive to the initial slope of the velocity field. We argue that, since the role of turbulence is to create substructure from which gravitational instabilities may grow, variations in other initial conditions that also determine the fragmentation process are likely to affect the shape of the sub-stellar mass function as well. The absence of many planetary mass `free-floaters' in our simulations, especially in the mass range 1-10 MJ, suggests that, if these objects are abundant, they are likely to form by similar mechanisms to those thought to operate in quiescent accretion discs, instead of via instabilities in gravitationally unstable discs. Finally, we find that multiple and single stars share comparable kinematical properties, both populations being able to attain velocities in the range 1-10 km/s. From these values we draw the conclusion that only low-mass star-forming regions such as Taurus-Auriga or Ophiuchus, where the escape speed is low, might have suffered some depletion of its single and binary stellar population.Comment: 13 pages, 6 figures, accepted by MNRA

    A Hubble Space Telescope ACS Search for Brown Dwarf Binaries in the Pleiades Open Cluster

    Get PDF
    We present the results of a high-resolution imaging survey for brown dwarf binaries in the Pleiades open cluster. The observations were carried out with the Advance Camera for Surveys onboard the Hubble Space Telescope. Our sample consists of 15 bona-fide brown dwarfs. We confirm 2 binaries and detect their orbital motion, but we did not resolve any new binary candidates in the separation range between 5.4AU and 1700AU and masses in the range 0.035--0.065~Msun. Together with the results of our previous study (Martin et al., 2003), we can derive a visual binary frequency of 13.3−4.3+13.7^{+13.7}_{-4.3}\% for separations greater than 7~AU masses between 0.055--0.065~M_{\sun} and mass ratios between 0.45--0.9<q<<q<1.0. The other observed properties of Pleiades brown dwarf binaries (distributions of separation and mass ratio) appear to be similar to their older counterparts in the field.Comment: 29 pages, 7 figures, 6 tables, accepted for publication in Ap

    The atypical chemokine receptor ACKR2 is protective against sepsis

    Get PDF
    Sepsis is a systemic inflammatory response as a result of uncontrolled infections. Neutrophils are the first cells to reach the primary sites of infection and chemokines play a key role in recruiting neutrophils. However, in sepsis chemokines could also contribute to neutrophil infiltration to vital organs leading to multiple organ failure. ACKR2 is an atypical chemokine receptor, which can remove and degrade inflammatory CC chemokines. The role of ACK2 in sepsis is unknown. Using a model of cecal ligation and puncture (CLP), we demonstrate here that ACKR2 deficient (−/−) mice exhibited a significant reduction in the survival rate compared to similarly treated wild type (WT) mice. However, neutrophil migration to the peritoneal cavity and bacterial load were similar between WT and ACKR2−/− mice during CLP. In contrast, ACKR2−/− mice showed increased neutrophil infiltration and elevated CC chemokine levels in the lung, kidney and heart compared to the WT mice. In addition, ACKR2−/− mice also showed more severe lesions in the lung and kidney than those in the WT mice. Consistent with these results, WT mice under non-severe sepsis (90% survival) had higher expression of ACKR2 in these organs than mice under severe sepsis (no survival). Finally, the lungs from septic patients showed increased number of ACKR2+ cells compared to those of non-septic patients. Our data indicate that ACKR2 may have a protective role during sepsis, and the absence of ACKR2 leads to exacerbated chemokine accumulation, neutrophil infiltration and damage to vital organs
    • …
    corecore