5,768 research outputs found
Diffeomorphisms and families of Fourier-Mukai transforms in mirror symmetry
Assuming the standard framework of mirror symmetry, a conjecture is
formulated describing how the diffeomorphism group of a Calabi-Yau manifold Y
should act by families of Fourier-Mukai transforms over the complex moduli
space of the mirror X. The conjecture generalizes a proposal of Kontsevich
relating monodromy transformations and self-equivalences. Supporting evidence
is given in the case of elliptic curves, lattice-polarized K3 surfaces and
Calabi-Yau threefolds. A relation to the global Torelli problem is discussed.Comment: Approx. 20 pages LaTeX. One reference adde
Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory
Context. Debris discs are thought to be formed through the collisional
grinding of planetesimals, and can be considered as the outcome of planet
formation. Understanding the properties of gas and dust in debris discs can
help us to comprehend the architecture of extrasolar planetary systems.
Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have
provided a valuable dataset for the study of debris discs gas and dust
composition. This paper is part of a series of papers devoted to the study of
Herschel PACS observations of young stellar associations.
Aims. This work aims at studying the properties of discs in the Beta Pictoris
Moving Group (BPMG) through far-IR PACS observations of dust and gas.
Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100
and 160 microns of 19 BPMG members, together with spectroscopic observations of
four of them. Spectroscopic observations were centred at 63.18 microns and 157
microns, aiming to detect [OI] and [CII] emission. We incorporated the new
far-IR observations in the SED of BPMG members and fitted modified blackbody
models to better characterise the dust content.
Results. We have detected far-IR excess emission toward nine BPMG members,
including the first detection of an IR excess toward HD 29391.The star HD
172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding
the short list of debris discs with a gas detection. No debris disc in BPMG is
detected in both [OI] and [CII]. The discs show dust temperatures in the range
55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii
from blackbody models in the range 3 to 82 AU. All the objects with a gas
detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table
An item's status in semantic memory determines how it is recognized: Dissociable patterns of brain activity observed for famous and unfamiliar faces
Are all faces recognized in the same way, or does previous experience with a face change how it is retrieved? Previous research using human scalp-recorded Event-Related Potentials (ERPs) demonstrates that recognition memory can produce dissociable brain signals under a variety of circumstances. While many studies have reported dissociations between the putative ‘dual processes’ of familiarity and recollection, a growing number of reports demonstrate that recollection itself may be fractionated into component processes. Many recognition memory studies using lexical materials as stimuli have reported a left parietal ERP old/new effect for recollection; however, when unfamiliar faces are recollected, an anterior effect can be observed. This paper addresses two separate hypotheses concerning the functional significance of the anterior old/new effect: perceptual retrieval and semantic status. The perceptual retrieval view is that the anterior effect reflects reinstatement of perceptual information bound up in an episodic representation, while the semantic status view is that information not represented in semantic memory pre-experimentally elicits the anterior effect instead of the left parietal effect. We tested these two competing accounts by investigating recognition memory for unfamiliar faces and famous faces in two separate experiments, in which same or different pictures of studied faces were presented as test items to permit brain activity associated with retrieving face and perceptual information to be examined independently. The difference in neural activity between same and different picture hits was operationalized as a pattern of activation associated with perceptual retrieval; while the contrast between different picture hits and correct rejection of new faces was assumed to reflect face retrieval. In Experiment 1, using unfamiliar faces, the anterior old/new effect (500–700msec) was observed for face retrieval but not for perceptual retrieval, challenging the perceptual retrieval hypothesis. In Experiment 2, using famous faces, face retrieval was associated with a left parietal effect (500–700msec), supporting the semantic representation hypothesis. A between-subjects analysis comparing scalp topography across the two experiments found that the anterior effect observed for unfamiliar faces is dissociable from the left parietal effect found for famous faces. This pattern of results supports the hypothesis that an item's status in semantic memory determines how it is recognized
On complex surfaces diffeomorphic to rational surfaces
In this paper we prove that no complex surface of general type is
diffeomorphic to a rational surface, thereby completing the smooth
classification of rational surfaces and the proof of the Van de Ven conjecture
on the smooth invariance of Kodaira dimension.Comment: 34 pages, AMS-Te
Topological quantum D-branes and wild embeddings from exotic smooth R^4
This is the next step of uncovering the relation between string theory and
exotic smooth R^4. Exotic smoothness of R^4 is correlated with D6 brane charges
in IIA string theory. We construct wild embeddings of spheres and relate them
to a class of topological quantum Dp-branes as well to KK theory. These branes
emerge when there are non-trivial NS-NS H-fluxes where the topological classes
are determined by wild embeddings S^2 -> S^3. Then wild embeddings of higher
dimensional -complexes into S^n correspond to Dp-branes. These wild
embeddings as constructed by using gropes are basic objects to understand
exotic smoothness as well Casson handles. Next we build C*-algebras
corresponding to the embeddings. Finally we consider topological quantum
D-branes as those which emerge from wild embeddings in question. We construct
an action for these quantum D-branes and show that the classical limit agrees
with the Born-Infeld action such that flat branes = usual embeddings.Comment: 18 pages, 1 figur
On semistable principal bundles over a complex projective manifold, II
Let (X, \omega) be a compact connected Kaehler manifold of complex dimension
d and E_G a holomorphic principal G-bundle on X, where G is a connected
reductive linear algebraic group defined over C. Let Z (G) denote the center of
G. We prove that the following three statements are equivalent: (1) There is a
parabolic subgroup P of G and a holomorphic reduction of the structure group of
E_G to P (say, E_P) such that the bundle obtained by extending the structure
group of E_P to L(P)/Z(G) (where L(P) is the Levi quotient of P) admits a flat
connection; (2) The adjoint vector bundle ad(E_G) is numerically flat; (3) The
principal G-bundle E_G is pseudostable, and the degree of the charateristic
class c_2(ad(E_G) is zero.Comment: 15 page
Reducing vortex density in superconductors using the ratchet effect
A serious obstacle that impedes the application of low and high temperature
superconductor (SC) devices is the presence of trapped flux. Flux lines or
vortices are induced by fields as small as the Earth's magnetic field. Once
present, vortices dissipate energy and generate internal noise, limiting the
operation of numerous superconducting devices. Methods used to overcome this
difficulty include the pinning of vortices by the incorporation of impurities
and defects, the construction of flux dams, slots and holes and magnetic
shields which block the penetration of new flux lines in the bulk of the SC or
reduce the magnetic field in the immediate vicinity of the superconducting
device. Naturally, the most desirable would be to remove the vortices from the
bulk of the SC. There is no known phenomenon, however, that could form the
basis for such a process. Here we show that the application of an ac current to
a SC that is patterned with an asymmetric pinning potential can induce vortex
motion whose direction is determined only by the asymmetry of the pattern. The
mechanism responsible for this phenomenon is the so called ratchet effect, and
its working principle applies to both low and high temperature SCs. As a first
step here we demonstrate that with an appropriate choice of the pinning
potential the ratchet effect can be used to remove vortices from low
temperature SCs in the parameter range required for various applications.Comment: 7 pages, 4 figures, Nature (in press
- …