93 research outputs found
Peri- and postnatal effects of prenatal adenoviral VEGF gene therapy in growth-restricted sheep
Supported by Wellcome Trust project grant 088208 to A.L.D., J.M.W., D.M.P., I.C.Z., and J.F.M. Wellbeing of Women research training fellowship 318 to D.J.C., Scottish Government work package 4.2 to J.M.W., J.S.M., and R.P.A., as well as funding from the National Institute for Health Research University College London Hospitals Biomedical Research Centre A.L.D. and D.M.P., the British Heart Foundation to I.C.Z., and Ark Therapeutics Oy, Kuopio, Finland, which supplied adenovirus vectors free of charge.Peer reviewedPublisher PD
A Cross-Correlation Analysis of Mg II Absorption Line Systems and Luminous Red Galaxies from the SDSS DR5
We analyze the cross-correlation of 2,705 unambiguously intervening Mg II
(2796,2803A) quasar absorption line systems with 1,495,604 luminous red
galaxies (LRGs) from the Fifth Data Release of the Sloan Digital Sky Survey
within the redshift range 0.36<=z<=0.8. We confirm with high precision a
previously reported weak anti-correlation of equivalent width and dark matter
halo mass, measuring the average masses to be log M_h(M_[solar]h^-1)=11.29
[+0.36,-0.62] and log M_h(M_[solar]h^-1)=12.70 [+0.53,-1.16] for systems with
W[2796A]>=1.4A and 0.8A<=W[2796A]<1.4A, respectively. Additionally, we
investigate the significance of a number of potential sources of bias inherent
in absorber-LRG cross-correlation measurements, including absorber velocity
distributions and the weak lensing of background quasars, which we determine is
capable of producing a 20-30% bias in angular cross-correlation measurements on
scales less than 2'. We measure the Mg II - LRG cross-correlation for 719
absorption systems with v<60,000 km s^-1 in the quasar rest frame and find that
these associated absorbers typically reside in dark matter haloes that are
~10-100 times more massive than those hosting unambiguously intervening Mg II
absorbers. Furthermore, we find evidence for evolution of the redshift number
density, dN/dz, with 2-sigma significance for the strongest (W>2.0A) absorbers
in the DR5 sample. This width-dependent dN/dz evolution does not significantly
affect the recovered equivalent width-halo mass anti-correlation and adds to
existing evidence that the strongest Mg II absorption systems are correlated
with an evolving population of field galaxies at z<0.8, while the non-evolving
dN/dz of the weakest absorbers more closely resembles that of the LRG
population.Comment: 21 pages, 19 figures; Published in Astrophysical Journa
Maternal PlGF and umbilical Dopplers predict pregnancy outcomes at diagnosis of early-onset fetal growth restriction
BACKGROUND: Severe, early-onset fetal growth restriction (FGR) causes significant fetal and neonatal mortality and morbidity. Predicting the outcome of affected pregnancies at the time of diagnosis is difficult, thus preventing accurate patient counseling. We investigated the use of maternal serum protein and ultrasound measurements at diagnosis to predict fetal or neonatal death and 3 secondary outcomes: fetal death or delivery at or before 28+0 weeks, development of abnormal umbilical artery (UmA) Doppler velocimetry, and slow fetal growth.
//
METHODS: Women with singleton pregnancies (n = 142, estimated fetal weights [EFWs] below the third centile, less than 600 g, 20+0 to 26+6 weeks of gestation, no known chromosomal, genetic, or major structural abnormalities) were recruited from 4 European centers. Maternal serum from the discovery set (n = 63) was analyzed for 7 proteins linked to angiogenesis, 90 additional proteins associated with cardiovascular disease, and 5 proteins identified through pooled liquid chromatography and tandem mass spectrometry. Patient and clinician stakeholder priorities were used to select models tested in the validation set (n = 60), with final models calculated from combined data.
//
RESULTS: The most discriminative model for fetal or neonatal death included the EFW z score (Hadlock 3 formula/Marsal chart), gestational age, and UmA Doppler category (AUC, 0.91; 95% CI, 0.86–0.97) but was less well calibrated than the model containing only the EFW z score (Hadlock 3/Marsal). The most discriminative model for fetal death or delivery at or before 28+0 weeks included maternal serum placental growth factor (PlGF) concentration and UmA Doppler category (AUC, 0.89; 95% CI, 0.83–0.94).
//
CONCLUSION: Ultrasound measurements and maternal serum PlGF concentration at diagnosis of severe, early-onset FGR predicted pregnancy outcomes of importance to patients and clinicians.
//
TRIAL REGISTRATION: ClinicalTrials.gov NCT02097667.
//
FUNDING: The European Union, Rosetrees Trust, Mitchell Charitable Trust
Exploring the mycobacteriophage metaproteome: Phage genomics as an educational platform
Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774) of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three - encoding tape-measure proteins, lysins, and minor tail proteins - are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15%) have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education. © 2006 Hatfull et al
Dynamic contrast-enhanced CT compared with positron emission tomography CT to characterise solitary pulmonary nodules: the SPUtNIk diagnostic accuracy study and economic modelling
BACKGROUND: Current pathways recommend positron emission tomography-computerised tomography for the characterisation of solitary pulmonary nodules. Dynamic contrast-enhanced computerised tomography may be a more cost-effective approach.
OBJECTIVES: To determine the diagnostic performances of dynamic contrast-enhanced computerised tomography and positron emission tomography-computerised tomography in the NHS for solitary pulmonary nodules. Systematic reviews and a health economic evaluation contributed to the decision-analytic modelling to assess the likely costs and health outcomes resulting from incorporation of dynamic contrast-enhanced computerised tomography into management strategies.
DESIGN: Multicentre comparative accuracy trial.
SETTING: Secondary or tertiary outpatient settings at 16 hospitals in the UK.
PARTICIPANTS: Participants with solitary pulmonary nodules of ≥ 8 mm and of ≤ 30 mm in size with no malignancy in the previous 2 years were included.
INTERVENTIONS: Baseline positron emission tomography-computerised tomography and dynamic contrast-enhanced computer tomography with 2 years' follow-up.
MAIN OUTCOME MEASURES: Primary outcome measures were sensitivity, specificity and diagnostic accuracy for positron emission tomography-computerised tomography and dynamic contrast-enhanced computerised tomography. Incremental cost-effectiveness ratios compared management strategies that used dynamic contrast-enhanced computerised tomography with management strategies that did not use dynamic contrast-enhanced computerised tomography.
RESULTS: A total of 380 patients were recruited (median age 69 years). Of 312 patients with matched dynamic contrast-enhanced computer tomography and positron emission tomography-computerised tomography examinations, 191 (61%) were cancer patients. The sensitivity, specificity and diagnostic accuracy for positron emission tomography-computerised tomography and dynamic contrast-enhanced computer tomography were 72.8% (95% confidence interval 66.1% to 78.6%), 81.8% (95% confidence interval 74.0% to 87.7%), 76.3% (95% confidence interval 71.3% to 80.7%) and 95.3% (95% confidence interval 91.3% to 97.5%), 29.8% (95% confidence interval 22.3% to 38.4%) and 69.9% (95% confidence interval 64.6% to 74.7%), respectively. Exploratory modelling showed that maximum standardised uptake values had the best diagnostic accuracy, with an area under the curve of 0.87, which increased to 0.90 if combined with dynamic contrast-enhanced computerised tomography peak enhancement. The economic analysis showed that, over 24 months, dynamic contrast-enhanced computerised tomography was less costly (£3305, 95% confidence interval £2952 to £3746) than positron emission tomography-computerised tomography (£4013, 95% confidence interval £3673 to £4498) or a strategy combining the two tests (£4058, 95% confidence interval £3702 to £4547). Positron emission tomography-computerised tomography led to more patients with malignant nodules being correctly managed, 0.44 on average (95% confidence interval 0.39 to 0.49), compared with 0.40 (95% confidence interval 0.35 to 0.45); using both tests further increased this (0.47, 95% confidence interval 0.42 to 0.51).
LIMITATIONS: The high prevalence of malignancy in nodules observed in this trial, compared with that observed in nodules identified within screening programmes, limits the generalisation of the current results to nodules identified by screening. CONCLUSIONS: Findings from this research indicate that positron emission tomography-computerised tomography is more accurate than dynamic contrast-enhanced computerised tomography for the characterisation of solitary pulmonary nodules. A combination of maximum standardised uptake value and peak enhancement had the highest accuracy with a small increase in costs. Findings from this research also indicate that a combined positron emission tomography-dynamic contrast-enhanced computerised tomography approach with a slightly higher willingness to pay to avoid missing small cancers or to avoid a 'watch and wait' policy may be an approach to consider.
FUTURE WORK: Integration of the dynamic contrast-enhanced component into the positron emission tomography-computerised tomography examination and the feasibility of dynamic contrast-enhanced computerised tomography at lung screening for the characterisation of solitary pulmonary nodules should be explored, together with a lower radiation dose protocol
Observations of Ly Emitters at High Redshift
In this series of lectures, I review our observational understanding of
high- Ly emitters (LAEs) and relevant scientific topics. Since the
discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs
have been identified photometrically (spectroscopically) at to . These large samples of LAEs are useful to address two major astrophysical
issues, galaxy formation and cosmic reionization. Statistical studies have
revealed the general picture of LAEs' physical properties: young stellar
populations, remarkable luminosity function evolutions, compact morphologies,
highly ionized inter-stellar media (ISM) with low metal/dust contents, low
masses of dark-matter halos. Typical LAEs represent low-mass high- galaxies,
high- analogs of dwarf galaxies, some of which are thought to be candidates
of population III galaxies. These observational studies have also pinpointed
rare bright Ly sources extended over kpc, dubbed
Ly blobs, whose physical origins are under debate. LAEs are used as
probes of cosmic reionization history through the Ly damping wing
absorption given by the neutral hydrogen of the inter-galactic medium (IGM),
which complement the cosmic microwave background radiation and 21cm
observations. The low-mass and highly-ionized population of LAEs can be major
sources of cosmic reionization. The budget of ionizing photons for cosmic
reionization has been constrained, although there remain large observational
uncertainties in the parameters. Beyond galaxy formation and cosmic
reionization, several new usages of LAEs for science frontiers have been
suggested such as the distribution of {\sc Hi} gas in the circum-galactic
medium and filaments of large-scale structures. On-going programs and future
telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the
science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological
Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., &
Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the
lecture program including the video recording and ppt files :
https://obswww.unige.ch/Courses/saas-fee-2016/program.cg
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
- …