5 research outputs found

    Neodymium isotopic variations in seawater

    No full text
    New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average ε_(Nd)(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,ε_(Nd)(0) ≅ −12 ± 2; Indian Ocean,ε_(Nd)(0) ≅ −8 ± 2; Pacific Ocean,ε_(Nd)(0) ≅ −3 ± 2. These values are considerably less than ε_(Nd)(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of ^(143)Nd between the Pacific and Atlantic Oceans corresponds to ∼106 atoms ^(143)Nd per gram of seawater. The correspondence between the ^(143)Nd/^(144)Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography. Distinctive differences in ε_(Nd)(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition. The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans

    (Table 4, page 134) Results of Nd isotopic measurements in two layers of a Pacific Ocean manganese nodule (MN139)

    No full text
    New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average eNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean, eNd(0) = -12 ± 2; Indian Ocean, eNd(0) = -8 ± 2; Pacific Ocean, eNd(0) = -3 ± 2. These values are considerably less than eNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of 143Nd between the Pacific and Atlantic Oceans corresponds to ab. 10**6 atoms 143Nd per gram of seawater. The correspondence between the 143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography. Distinctive differences in eNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition. The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans

    Isotopic Composition of Neodymium in Waters from the Drake Passage

    No full text
    The isotopic composition of neodymium has been determined in seawaters from the Drake Passage. The Antarctic Circumpolar Current, which controls interocean mixing, flows through this passage. The parameter ε_(Nd)(0) which is a function of the ratio of neodymium-143 to neodymium-144, is found to be uniform with depth at two stations with a value which is intermediate between the values for the Atlantic and the Pacific and indicates that the Antarctic Circumpolar current consists of about 70 percent Atlantic water. Cold bottom water from a site in the south central Pacific has the neodymium isotopic signature of the waters in the Drake Passage. By using a box model to describe the exchange of water between the Southern Ocean and the ocean basins to the north together with the isotopic results, an upper limit of approximately 33 million cubic meters per second is calculated for the rate of exchange between the Pacific and the Southern Ocean. Concentrations of samarium and neodymium were also determined and found to increase approximately linearly with depth. These results suggest that neodymium may be a valuable tracer in oceanography and may be useful in paleo-oceanographic studies
    corecore