2,945 research outputs found

    Welcome and Introductory Remarks

    Get PDF
    It\u27s a pleasure to welcome you to the ARPA/AFML Review of Progress in Quantitative NDE. I\u27m Don Thompson, Director of the Structural Materials Department at the Rockwell International Science Center, and have had the privilege of serving as the Program Manager for the Program in Quantitative NDE which is under discussion for the next three days here. I\u27d like to introduce Prof. Herbert H. Johnson, Director of the Materials Science Center at Cornell University. and our host for the next three days. Herb, I\u27m sure that Dr. Peter Cannon, Vice President of the Science Center, Mrs. Diane Harris, who has served as our conference coordinator, myself, and a 11 my colleagues join to thank you and your staff-- Mr. Noel Desch, Mrs. Sharon Wells, Ms . Kris Molt, and many others--for all the cooperation you have given us. Special mention should also be given to Prof. J. A. Krumhansl for taking the initiative in suggesting that this meeting be held at Cornell. We appreciate the many courtesies and hospitality that you at Cornell have shown us

    Preface

    Full text link
    Preface by Johnson Agbinya, H Anthony Chan and Donald Adjeroh

    Bcl-xL-mediated remodeling of rod and cone synaptic mitochondria after postnatal lead exposure: electron microscopy, tomography and oxygen consumption.

    Get PDF
    PurposePostnatal lead exposure produces rod-selective and Bax-mediated apoptosis, decreased scotopic electroretinograms (ERGs), and scotopic and mesopic vision deficits in humans and/or experimental animals. Rod, but not cone, inner segment mitochondria were considered the primary site of action. However, photoreceptor synaptic mitochondria were not examined. Thus, our experiments investigated the structural and functional effects of environmentally relevant postnatal lead exposure on rod spherule and cone pedicle mitochondria and whether Bcl-xL overexpression provided neuroprotection.MethodsC57BL/6N mice pups were exposed to lead only during lactation via dams drinking water containing lead acetate. The blood [Pb] at weaning was 20.6±4.7 ”g/dl, which decreased to the control value by 2 months. To assess synaptic mitochondrial structural differences and vulnerability to lead exposure, wild-type and transgenic mice overexpressing Bcl-xL in photoreceptors were used. Electron microscopy, three-dimensional electron tomography, and retinal and photoreceptor synaptic terminal oxygen consumption (QO(2)) studies were conducted in adult control, Bcl-xL, lead, and Bcl-xL/lead mice.ResultsThe spherule and pedicle mitochondria in lead-treated mice were swollen, and the cristae structure was markedly changed. In the lead-treated mice, the mitochondrial cristae surface area and volume (abundance: measure correlated with ATP (ATP) synthesis) were decreased in the spherules and increased in the pedicles. Pedicles also had an increased number of crista segments per volume. In the lead-treated mice, the number of segments/crista and fraction of cristae with multiple segments (branching) similarly increased in spherule and pedicle mitochondria. Lead-induced remodeling of spherule mitochondria produced smaller cristae with more branching, whereas pedicle mitochondria had larger cristae with more branching and increased crista junction (CJ) diameter. Lead decreased dark- and light-adapted photoreceptor and dark-adapted photoreceptor synaptic terminal QO(2). Bcl-xL partially blocked many of the lead-induced alterations relative to controls. However, spherules still had partially decreased abundance, whereas pedicles still had increased branching, increased crista segments per volume, and increased crista junction diameter. Moreover, photoreceptor and synaptic QO(2) were only partially recovered.ConclusionsThese findings reveal cellular and compartmental specific differences in the structure and vulnerability of rod and cone inner segment and synaptic mitochondria to postnatal lead exposure. Spherule and pedicle mitochondria in lead-exposed mice displayed complex and distinguishing patterns of cristae and matrix damage and remodeling consistent with studies showing that synaptic mitochondria are more sensitive to Ca(2+) overload, oxidative stress, and ATP loss than non-synaptic mitochondria. The lead-induced decreases in QO(2) likely resulted from the decreased spherule cristae abundance and smaller cristae, perhaps due to Bax-mediated effects as they occurred in apoptotic rod inner segments. The increase in pedicle cristae abundance and CJ diameter could have resulted from increased Drp1-mediated fission, as small mitochondrial fragments were observed. The mechanisms of Bcl-xL-mediated remodeling might occur via interaction with formation of CJ protein 1 (Fcj1), whereas the partial protection of synaptic QO(2) might result from the enhanced efficiency of energy metabolism via Bcl-xL's direct interaction with the F1F0 ATP synthase and/or regulation of cellular redox status. These lead-induced alterations in photoreceptor synaptic terminal mitochondria likely underlie the persistent scotopic and mesopic deficits in lead-exposed children, workers, and experimental animals. Our findings stress the clinical and scientific importance of examining synaptic dysfunction following injury or disease during development, and developing therapeutic treatments that prevent synaptic degeneration in retinal and neurodegenerative disorders even when apoptosis is blocked

    Effect of Inert, Reducing, and Oxidizing Atmospheres on Friction and Wear of Metals to 1000 F

    Get PDF
    Experiments were conducted in inert, reducing, and oxidizing atmospheres to determine their influence on the friction and wear properties of various metals. Nitrogen, argon, forming gas (10 volume percent H2, 90 volume percent N2), and various concentrations of oxygen in nitrogen were used. A 3/16-inch-radius hemispherical rider under a load of 1000 grams contacted the flat surface of a rotating disk. The surface speed employed was 35 feet per minute. The presence of surface oxides is vitally important to the protection of metals in sliding contact. Extremely high friction and excessive wear were encountered in the absence of these oxides. In some instances (electrolytically pure copper), the removal of the surface oxides resulted in mass welding of the specimens in sliding contact. Extremely small quantities of oxygen are sufficient to provide protection of metal surfaces; for example, with 440-C stainless steel, 0.03 volume percent oxygen was found to be adequate

    Halogen Containing Gases as Lubricants for Crystallized Glass Ceramic Metal Combinations at Temperatures to 1500 F

    Get PDF
    Pyroceram 9608 (a crystallized glass ceramic) has been considered for use in high-temperature bearing and seal applications. One of the problems encountered with Pyroceram is the lack of availability of lubricants for the temperature range in which this material becomes practical. Experiments were conducted with Pyroceram sliding on various nickel- and cobalt-base alloys using reactive halogen-containing gases as lubricants. Friction and wear data were obtained as a function of sliding velocity and temperature. Studies were made with a hemispherical rider (3/16-in. rad., Pyroceram 9608) sliding in a circumferential path on the flat surface of a rotating disk (2(1/2) in. diam., nickel- or cobalt-base alloys). The specimens were run in an atmosphere of the various gases with a load of 1200 grams, a sliding velocity of 3200 feet per minute, and temperatures from 75 to 1500 F. The gas CF2Br-CF2Br was found to be an effective lubricant for Pyroceram 9608 sliding on Hastelloy R-235 and Inconel X up to 1400 F. The gas CF2Cl-CF2Cl provided effective lubrication for Pyroceram sliding on various cobalt-base alloys at 1000 F

    Preface

    Full text link
    Information and communication technology (ICT) has taken a centre stage in the day to day activities of people in every country today, from social interactions to business and pleasure. The technologically advanced countries have been experiencing rapid changes in their way of life, through the fruits of research and developments in ICT. Many developing countries have also joined to contribute to global advancement in ICT and have indeed made fundamental changes to the lifestyle and working habit of their people

    Halogen-Containing Gases as Boundary Lubricants for Corrosion-Resistant Alloys at 1200 F

    Get PDF
    The extreme temperatures anticipated for lubricated parts in advanced flight powerplants dictate the consideration of unconventional methods of lubrication such as solid lubricants and the reactive gases described in the present research. These halogen-containing "reactive" gases such as dichlorodifluoromethane, CF2Cl2, are among the most stable of organic molecules. The high "flash" temperatures generated at the contacting asperities as a result of frictional heat are sufficient to cause local decomposition of the halogen-containing gases. The active atoms thus released (e.g., chlorine) then react with the metal to be lubricated to form halides capable of effective lubrication. The presence of small amounts of a sulfur-containing gas (e.g., 1 percent sulfur hexafluoride, SF6) was found to catalyze the formation of metal halides. Friction and wear studies were made with a hemisphere (3/16-in. rad.) rider sliding in a circumferential path on the flat surface of a rotating disk (2 1/2-in. diam.). The specimens of corrosion-resistant 2 alloys were run in an atmosphere of the various gases with a load of 1200 grams, a sliding velocity of 120 feet per minute, and temperature from 75 to 1200 F. An effective lubricant for ferritic materials (M-1 tool steel) was CF2Cl2, but significant corrosion occurred above 600 F. Corrosion evaluation in CF2Cl2 suggested a number of nickel- and cobalt-base alloys for additional lubrication study. Several combinations of gases and these metals were found to lubricate to 1200 F without excessive corrosion. The gases were CF2Cl2 Plus 1 percent SF6, monobromotrifluoromethane CF3Br plus 1 percent SF6, dibromodifluoromethane CF2Br2, iodotrifluoromethane, CF3I, and I2. Careful selection of metals and gas are necessary for successful lubrication over specific temperature ranges. Optimum combinations give friction coefficients as low as 0.05 withou

    Use of Less Reactive Materials and More Stable Gases to Reduce Corrosive Wear When Lubricating with Halogenated Gases

    Get PDF
    The gases CF2Cl-CF2Cl, CF2Cl2, and CF2Br-CF2Br were used to lubricate metals, cermets, and ceramics in this study. One of the criteria for determining the effectiveness of a reactive-gas-lubricated systems is the stability of the halogen-containing gas molecule. The carbon-to-halogen bond in the ethane molecule has extremely good thermal stability superior to the methane analogs (CF2Cl2 and CF2Br2) used in earlier research. For this reason, the ethane compounds CF2Cl-CF2Cl and CF2Br-CF2Br were considered as high-temperature lubricants. Friction and wear studies were made with a hemisphere (3/16-in. rad.) rider sliding in a circumferential path on the flat surface of a rotating disk (21/2-in. diam. ). The specimens of metal alloys, cermets, and ceramics were run In an atmosphere of the various gases with a load of 1200 grams, sliding velocities from 75 to 8000 feet per minute, and temperatures from 75 to 1400 F. The gas CF2Cl-CF2Cl was found to be an effective lubricant for the cermet LT-LB (59.0 Cr, 19.0 Al2O3, 20.0 Mo, 2.0 Ti) and the ceramic Al2O3 sliding on Stellite Star J (cobalt-base alloy) at temperatures to 1400 F. The bromine-containing gas CF2Br-CF2Br was found to give friction and wear values that can be considered to be in a region of effective boundary lubrication for the cermet K175D (nickel-bonded metal carbide) sliding on the metal Hastelloy R-235 (nickel-base alloy) at temperatures to 1200 F

    Theoretical Isochrones with Extinction in the K Band. II. J - K versus K

    Full text link
    We calculate theoretical isochrones in a consistent way for five filter pairs near the J and K band atmospheric windows (J-K, J-K', J-Ks, F110W-F205W, and F110W-F222M) using the Padova stellar evolutionary models of Girardi et al. We present magnitude transformations between various K-band filters as a function of color. Isochrones with extinction of up to 6 mag in the K band are also presented. As found for the filter pairs composed of H & K band filters, we find that the reddened isochrones of different filter pairs behave as if they follow different extinction laws, and that the extinction curves of Hubble Space Telescope NICMOS filter pairs in the color-magnitude diagram are considerably nonlinear. Because of these problems, extinction values estimated with NICMOS filters can be in error by up to 1.3 mag. Our calculation suggests that the extinction law implied by the observations of Rieke et al for wavelengths between the J and K bands is better described by a power-law function with an exponent of 1.66 instead of 1.59, which is commonly used with an assumption that the transmission functions of J and K filters are Dirac delta functions.Comment: Published in PASP, 118, 62 (Jan. 2006
    • 

    corecore