41 research outputs found

    Construction and evaluation of classifiers for forensic document analysis

    Full text link
    In this study we illustrate a statistical approach to questioned document examination. Specifically, we consider the construction of three classifiers that predict the writer of a sample document based on categorical data. To evaluate these classifiers, we use a data set with a large number of writers and a small number of writing samples per writer. Since the resulting classifiers were found to have near perfect accuracy using leave-one-out cross-validation, we propose a novel Bayesian-based cross-validation method for evaluating the classifiers.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS379 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    High-Throughput Engineering of Nonribosomal Extension Modules

    No full text
    Nonribosomal peptides constitute an important class of natural products that display a wide range of bioactivities. They are biosynthesized by large assembly lines called nonribosomal peptide synthetases (NRPSs). Engineering NRPS modules represents an attractive strategy for generating customized synthetases for the production of peptide variants with improved properties. Here, we explored the yeast display of NRPS elongation and termination modules as a high-throughput screening platform for assaying adenylation domain activity and altering substrate specificity. Depending on the module, display of A-T bidomains or C-A-T tridomains, which also include an upstream condensation domain, proved to be most effective. Reprograming a tyrocidine synthetase elongation module to accept 4-propargyloxy-phenylalanine, a noncanonical amino acid that is not activated by the native protein, illustrates the utility of this approach for altering NRPS specificity at internal sites.ISSN:1554-8929ISSN:1554-893

    Kinetic Stabilization and Fusion of Apolipoprotein A-2:DMPC Disks: Comparison with apoA-1 and apoC-1

    Get PDF
    Denaturation studies of high-density lipoproteins (HDL) containing human apolipoprotein A-2 (apoA-2) and dimyristoyl phosphatidylcholine indicate kinetic stabilization. Circular dichroism (CD) and light-scattering melting curves show hysteresis and scan rate dependence, indicating thermodynamically irreversible transition with high activation energy E(a). CD and light-scattering data suggest that protein unfolding triggers HDL fusion. Electron microscopy, gel electrophoresis, and differential scanning calorimetry show that such fusion involves lipid vesicle formation and dissociation of monomolecular lipid-poor protein. Arrhenius analysis reveals two kinetic phases, a slower phase with E(a,slow) = 60 kcal/mol and a faster phase with E(a,fast) = 22 kcal/mol. Only the fast phase is observed upon repetitive heating, suggesting that lipid-poor protein and protein-containing vesicles have lower kinetic stability than the disks. Comparison of the unfolding rates and the melting data recorded by differential scanning calorimetry, CD, and light scattering indicates the rank order for the kinetic disk stability, apoA-1 > apoA-2 > apoC-1, that correlates with protein size rather than hydrophobicity. This contrasts with the tighter association of apoA-2 than apoA-1 with mature HDL, suggesting different molecular determinants for stabilization of model discoidal and plasma spherical HDL. Different effects of apoA-2 and apoA-1 on HDL fusion and stability may reflect different metabolic properties of apoA-2 and/or apoA-1-containing HDL
    corecore