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ABSTRACT 

QUANTITATIVE COMPARISON OF HISTONE PROTEINS 
IN HEALTHY AI-JD CROwN GALL-INFECTED 

VICIA FABA STEM TISSUE 

by Donald Louis Gantz 

The objective of this research was to compare the amounts 

of each species of histone protein in healthy and crown gall- 

infected Vlcia faba (broad bean) stem tissue in order to obtain 

insight into the mechanism (tumor-inducing principle) responsible 

for conversion of healthy cells to tumor cells. Healthy tissue 

from uninoculated, unwounded broad bean stems and crown gall 

tissue from inoculated stems v/ere harvested at 6 'weeks of age. 

Chromatin from healthy and diseased tissues v^as isolated and 

purified by differential centrifugation and sucrose density 

gradient centrifugation. Histones were extracted with l.ON 

H2SO4 and precipitated in ice cold ethanol. Histones were 

fractionated by discontinuous gel electrophoresis at pH 4*3 on 

15% polyacrylamide gels containing 8M urea. Histone bands were 

stained with 0.7% amido schwarz in 7% acetic acid. 

Nine histone bands were resolved in both healthy and diseased 

stem tissue. Gels were scanned at 5H5 run on a microdensitometer 

to ouantitate band percentages. The percentages of corresponding 

bands in healthy and diseased tissue were compared by a student-t 

distribution at the 5% level of significance. Significant 

iv 



differences existed between three bands, all of which were 

tentatively-identified as subfractions of lysine-rich histone 

based on their migration ratios. The gels containing histone 

from crown gall tissue exhibited a ’’smearing effect” v;hich was 

not visible in gels containing histone from healthy stem tissue. 
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CHAPTER I 

INTRODUCTION 

Agrobacterium tumefaciens is the causal agent of Crown Gall, 

a disease capable of effecting severe losses on nursery stock of 

fruit trees, grapes, and woody ornamentals. In the field, roots 

and crowns are the most commonly-infected plant parts. The 

characteristic symptom is a gall which may crush phloem and 

xylem tissue as it enlarges, leading to yellowing, wilting, 

and death of the plant. 

Two to three days after inoculation of the bacterium into a 

healthy plant, healthy cells in the area of the wound site become 

converted into tumorous cells. The exact mechanism of cell con¬ 

version is as yet unknown and is referred to in the literature as 

the ntumor-inducing principle”. This conversion process reouires 

the conditioning of healthy cells by wounding to make them vulner¬ 

able to transformation. The tumor cell undergoes alteration in 

biosynthetic pathways, leading to increased production of nucleic 

acids with associated proteins (8, 23, 28, 29, 32, 35) and growth 

regulators. Tumor cells are considered permanently altered and 

will not revert back to controlled-growth cells. All daughter cells 

produced by a tumor cell will also be tumorous. These permanent 

traits of a crown gall-infected plant cell suggest that an altera¬ 

tion has occurred at the genetic level. Braun has provided discus¬ 

sions of all aspects of the Crown Gall Disease (8, 9, 10). 
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Histones are low molecular weight basic proteins that are 

ionically attached to the DNA (deoxyribonucleic acid) of eukaryotic 

organisms (3, 12, 14, 16, 26, 34)* Histone and non-histone chromo¬ 

somal proteins, DNA, and a small amount of RNA (ribonucleic acid) 

compose chromatin, the genetic material of a plant or animal cell* 

It has been well-established that histones are involved in the 

regulation of messenger RNA synthesis apparently by blocking 

(repression) or allowing (derepression) the transcription of DNA 

(1, 4, 12, 13, 14, 21, 22, 26, 34, 39)* Direct or indirect action 

by the tumor-inducing principle could alter the histone-chromatin 

configuration of a normal cell, leading to its conversion to a 

tumor cell. 

It was the intent of this study to compare the amounts of 

each species of histone protein in healthy and crown gall-infected 

stem tissue in order to obtain some insight into the mechanism 

effecting conversion of healthy cells into tumor cells* 
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CHAPTER II 

LITERATURE REVIEW 

Investigations into the identity of the tumor-inducing 

principle seem to have been concentrated in two theoretical 

areas* The first theory is that a portion of the genome of 

Agrobacterium tumefaciens has become integrated into the host 

cell genome. Schilperoort, et al. (33) were able to form com¬ 

plexes between DNA isolated from crown gall tumors of Nicotiana 

t aba cum, var. White Burley and RNA that was complementary to DNA 

from A. tumefaciens (strain A6). In addition, hybridization 

occurred between DNA from tumors on tobacco induced by A* tumefac¬ 

iens strain A6 (as above) and RNA from A* tumefaciens (strain B6). 

Similarly, Quetier, et al. (27) noted common sequences between 

DNA of strain B6 of the bacterium and fully transformed, bacterial- 

free N. t aba cum cell DNA. Stroun, et ad.. (40) found RNA of A. 

tumefaciens, strain B6, in non-tumorous tomato cells after plants 

had been dipped in a bacterial suspension. This implied to the 

researchers that bacterial RNA synthesis had apparently occurred 

in the host cells. 

Other hybridization experiments were carried out by 

Srivastava (36). Working with A. tumefaciens strain 4-32 and 

N. tabacum L. var. Wisconsin 38, he observed that the homology 

between bacterial and tobacco tumor DNA was twice as great as that 

between bacterial and normal tissue DNA. 



4 

The second theory, and the one to which this researcher has 

addressed himself, attributes the transformation of a normal cell 

into a tumor cell to persistent derepression of a portion of the 

host genome. Although much of the work with histones has been 

done with animal tissues, plant histones are believed to be 

structurally and functionally homologous to histones in animal 

cells (4, 17)* 

Stedman and Stedman (39) made a comparison of the amounts 

of histones in normal and tumorous animal tissues. They found 

less histone in carcinomas than in healthy tissue. Using 

microphotometry studies of Broad Bean (Vicia faba) and lily nuclei, 

Rasch and Woodward (29) observed that, while total histone content 

of tumor tissue increased over normal tissue, DNA/histone ratios 

were essentially constant. However, the concentration of histones 

in diseased tissue was reduced because the average volume of 

nuclei of tumor cells increased compared to nuclei of healthy 

cells (28), 

Fellenberg (19) was able to achieve significant inhibition 

of tumor formation in stems of Kalanehoe daigremontiana by adding 

calf thymus histone at wound sites four days after inoculation 

with A. tumefaciens. 

A comparison of chromatin in normal and crown gall tumor 

tissue cultures of Nicotiana tabacum var, Yvisconsin 38 was made 

by Srivastava (37)* Analysis of histone fractions from a carboxy- 

methyl cellulose column revealed that tumor tissue contained 
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twice as much of histone fraction F2 (moderately lysine-rich 

histone) than did healthy tissue. Hovrever, amino acid compositions 

of histone fractions, melting points, RNA polymerase activity, 

and template activity of chromatins in both healthy and tumor 

tissue were very similar. 

Description of Histones. Histones are basic chromosomal 

proteins found only in eukaryotic organisms; prokaryotes such 

as A. tumefaciens do not have histones. There are five generally- 

accepted classes or fractions of histone: 1) very lysine-rich 

(VLR) or fl; 2) slightly lysine-rich (SLR) or f2b; 3) arginine- 

lysine-rich (AL) or f2a2; 4) arginine-rich (AR) or f3; and 5) glycine- 

arginine-rich (GAR) or f2al. The molecular weights of these frac¬ 

tions range from 21,000 to 11,000 daltons, respectively. Each 

fraction may have 1 to 5 sub-fractions depending upon the tissue 

type. More than 20$ of the amino acids composing each class of 

histone protein are lysine and arginine, both basic amino acids (26). 

Modifications of the amino acids contained in histones by 

acetylation, methylation, and phosphorylation (the most common) 

give some specificity to histones but it is believed that enough 

unique species of histones do not exist to account for complete 

gene regulation (1, 18). It is currently suspected that non-histone 

chromosomal proteins play an important role in the control of gene 

transcription (26). (See Appendix B for detailed information on 

non-histone chromosomal proteins.) 
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The site of histone synthesis in the cell has yet to be 

resolved. Olson, et ad.. (26) suggested that histone synthesis 

is probably totally or predominately in the cytoplasm. Other 

researchers (12, 30) feel that histones are probably made within 

the nucleus near DNA sites. Appendix A contains additional infor¬ 

mation on histone modification, synthesis, and roles. 

i 
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CHAPTER III 

MATERIALS AND METHODS 

Culturing of A. tumefaciens. Virulent strain 806 of 

Agrobacterium tumefaciens , obtained from Dr. T. T. Stonier, 

Manhattan College, N. Y., was maintained on slants of N agar 

(N broth from Difco; agar from Sigma) supplemented with 0.5$ 

glucose (Anhydrous Grade III, Sigma). Transfers were made each 

month to fresh, sterile slants. 

Cultures of A. tumefaciens for inoculation purposes were 

grown in N Broth supplemented with 0.5$ glucose and placed on 

a shaker for 48-60 hr at 150 rpm. 

Vicia faba (broad bean) was chosen as the plant system since 

it can be rapidly grown from seed and has thick stems for easy 

inoculation. Although not a natural host of A. tumefaciens, it 

is extremely susceptible when artificially inoculated. Plants 

were grown in the greenhouse in wooden flats containing a mixture 

of peat moss, soil, and sand (1:2:2). Plants were fertilized with 

Startfn Gro 16:32:16 on a monthly basis. Temperature range in 

the greenhouse was 15 - 25 C. Captain-treated seeds were obtained 

from Harris Seed Company, Rochester, N. Y. 

Method of Inoculation. Crown gall inoculations were made 

in stems when plants were 5-10 cm high using disposable hypodermic 

needles. Several punctures were made along the length of each 

stem. The needle tip was inserted into the pith and liquid was 

injected until exudation was observed at the wound site. 



8 

Uninoculated, unwounded broad bean plants and crown gall- 

infected plants were harvested at age 6 weeks. Sacrificed material 

was placed on ice as soon as possible and kept at 4 C throughout 

subseauent operations. Leaves, buds, and flowers were cut from 

stems of healthy plants; stems were minced into short pieces and 

weighed in cold beakers. The weight of minced stems was approx¬ 

imately 700 gm. Galls were excised from stems with as little 

healthy tissue as possible, weighed, and minced into small pieces 

in preparation for chromatin isolation. The minced gall tissue 

weighed about 100 grams. 

Isolation of Chromatin. Chromatin isolation and purification 

were based on methods by Huang and Bonner (22). Minced stem or 

gall tissue was homogenized in a 2-speed Waring Blender (Model 

5011S) at 4 C with homogenizing medium in a ratio of 1:1;5 (w/v). 

The medium, isotonic with the stem tissue, was composed of 0.05M 

Tris-HCl pH 8.0, 0.25 M sucrose, and 0.001 M MgCl2* After thorough 

homogenizing for 90 sec at high speed, the homogenate was filtered 

through 4 layers of cheesecloth to remove the bulk of the cell 

wall debris. Additional cell wall material was eliminated by 

filtration through 2 layers of Miracloth (Chicopee Mills, Inc. N. Y.). 

The filtrate was placed in polypropylene centrifuge tubes (250 ml 

capacity) and centrifuged in a GSA rotor at 4,000 x g for 30 min 

in a Sorvall RC2-B Centrifuge. After removal of the supernatant, 

the green, gelatinous portion of each pellet was scraped from the 

underlying starch and resuspended in 300 ml of homogenizing medium. 
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This suspension was centrifuged at 10,000 x g for 10 min and the 

pellet was scraped as before and resuspended in 300 ml of 0.05 M 

Tris-HCl buffer, pH 8.0. After centrifugation at 10,000 x g for 

10 min, the entire pellet was resuspended in 300 ml of Tris-HCl 

buffer. Two additional cycles of centrifugation and resuspension 

followed, with the entire pellet being suspended in 100 ml and 15 ml 

of buffer, respectively. The 15 ml suspension was thoroughly 

mixed with 20 strokes in a Ten Broeck Homogenizer. The suspension 

was stirred for 1 hr to ensure the solubilization of contaminating 

materials• 

Sucrose density gradient techniques were utilized to remove 

remaining starch, chlorophyll, and chloroplasts. Two and 1/2 ml 

of crude chromatin solution were layered on 11 ml of 1.7 M 

sucrose in each of 6 cellulose nitrate centrifuge tubes. The 

upper one-third of each tube was gently stirred to create a 

gradient. The six tubes were placed in an SW-40 Swinging Bucket 

Rotor and centrifuged at 22,000 rpm for 105 min in an L2-65B 

Beckman Preparative Ultracentrifuge. 

The supernatants along with suspended material were discarded. 

Each of the six pellets was rinsed once with 0.05 M Tris-HCl 

buffer and suspended in 2 ml of the same buffer. The 12 ml 

chromatin solution was dialyzed overnight in 100 volumes of 

0.05 M Tris-HCl to remove remaining sucrose. Chromatin yields 

per gram of stem tissue were calculated using Diphenylamine Test (11) 
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based on a calf thymus DNA standard. Absorbance at 595 nm was 

read on a Baush and Lomb Spectronic 20 and compared to a 0.05 M 

Tris-HCl buffer control. 

Extraction of Histone. Histones were extracted from previously- 

isolated chromatin using the method of Bonner, et al. (5). One 

quarter volume of 1.0 N H2SO4 was added to the chromatin solution 

(chromatin concentration had been adjusted to less than 400 ug 

DNA/ml) and stirred at 4 C for 30 min. The DNA was pelleted by 

centrifugation at 17,000 x £ for 20 min and the supernatant was 

saved. Two additional cycles of extraction were carried out with 

an amount of 0.4 N H2SO4 equal to l/2 the final volume of the 

first extract followed by centrifugations as before. To the com¬ 

bined supernatants was added four volumes of ice-cold ethanol to 

precipitate the histone sulfate. The solution was stored at -20 C 

for at least 24 hr and then centrifuged at 2500 x £ for 25 min to 

pellet histone sulfate. The pellet was rinsed twice in cold 

ethanol and centrifuged at 10,000 x £ for 15 min. The final pellet 

was dissolved in 2 ml of 0.05 M Tris-HCl, pH 8.0, frozen, and 

dried on a Thermovac FD-2a vacuum dessicator. Micrograms of histone 

per milligram of histone sulfate was determined by using the method 

of Lowry (24). Absorbance at 500 nm of histone sulfate dissolved 

in 0.01 M Tris-HCl buffer on a Baush and Lomb Spectronic 20 was 

compared to the absorbance of a 0.01 M Tris-HCl control. 
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Fractionation of Histone» Histone fractions were separated 

by discontinuous gel electrophoresis on polyacrylamide gels 

based on a modification by Bonner, et al. (3) of the method 

of Reisfield et al. (31)* 

Glass electrophoresis tubes, 7*5 cm x 5 mm I. D. were soaked 

overnight in sulfuric acid chromerge and rinsed well with distilled 

water. When dry, the tubes were coated with a 1:1 dilution of 

Photoflo 200 (Kodak) in distilled water and allowed to air dry. 

In the bottom of each stoppered electrophoresis tube was 

placed 1.1 ml of separating gel, pH 4*3, containing fresh 8 M 

urea in 15$ acrylamide. The gel was carefully overlaid with 0.1 

ml of 3 M urea. A flat interface between gel and water resulted 

during the 45 min polymerization period. After gel hardening, 

the 3 M urea was removed by gently shaking the inverted tube. 

Next, 0.15 ml of stacking gel, pH 6.7 and 2.5? acrylamide, were 

pipetted on top of the separating gel. The stacking gel was 

layered with 0.1 ml of distilled water and polymerized for 30 min 

using a polymerizing light source (Canalco). Each tube was then 

placed in a Pharmacia Electrophoresis Apparatus with sample end 

on top. 

The 200 ul sample solution, which was layered on the stacking 

gel, contained 1 part each of glycerol and 8 M urea, 0.03 parts 

of 0.5 N HC1 (20), and 32 ug to 50 ug of histone. A small amount 

of methyl green was added to each sample solution to serve as a 

marker dye. Next, the upper electrode buffer was layered on each 
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histone sample until the tube was completely filled* Upper and 

lower electrode buffers (31.2 gm B-alanine and 8 ml glacial 

acetic acid to one liter with distilled water) were adjusted 

to pH 5.0 with 1 N NaOH. 

The electrodes were connected to a Canalco 300B Electro¬ 

phoresis Constant Rate Source such that the lower electrode was 

the cathode* Electrophoresis was carried out at 4 ma per tube 

for approximately 6 hr, the exact time depending upon the rate of 

migration of the methyl green marker band* 

At the completion of electrophoresis, the gels were loosened 

from the glass tubes by spraying distilled water between gel 

and glass with a blunt hypodermic needle while gently rimming 

each gel. Gels were removed as quickly as possible to reduce 

diffusion of the unfixed protein. Gels were stained in 0*7^ 

amido schwarz in 7% acetic acid, incubated at 90 C for 45 min, 

rinsed twice with 7% acetic acid, and electrically destained in 

a Pharmacia GD-4 Destainer at 12*5 ma per gel rod. The destaining 

solvent was 7% acetic acid. After destaining, gels were stored 

in 7*5 cm x 9 mm glass culture tubes containing 7% acetic acid. 

Quantitation of Histone Fractions. Each gel was scanned 

at 525 nm using a Quick Scan, Jr. Microdensitometer (Helena 

Laboratories). The relative percentage of each histone fraction 

was calculated based on the automatically-plotted optical density 

and integration curves. A student-t distribution at the 5% 

level of significance was computed for each of the nine histone 
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bands in healthy and crown gall tissue. 

Gels were photographed with a Retina Reflex III Camera 

(Kodak) and type R - 32 mm close-up lens (Kodak). 



CHAPTER IV 

RESULTS 

The electrophoretic patterns of histones isolated from 

healthy and crown gall-infected broad bean stem tissue are shown 

in figure 1. Gels had been stained with 0.7? amido schwarz in 

(Jo acetic acid. Nine histone bands were visible in both healthy 

and diseased tissue. The first three bands (closest to the anode) 

in healthy and the first four bands in diseased tissue appeared 

grey to blue-grey while the remaining histone bands appeared 

blue to blue-black when viewed with a fluorescent light back¬ 

ground. Gray (20) characterized histones from healthy Vicia 

fs-ba shoot tissue and noted the grey color of the five slow- 

moving bands whereas the remaining four rapidly-moving histone 

bands were blue to blue-black. Gray had stained gels with 0.5? 

amido schwarz in 7? acetic acid. Easton and Chalkley (15), in 

their electrophoretic studies of histones from embryos and 

sperm of sea urchin, observed a distinct blue-grey color in 

the lysine-rich and slightly lysine-rich fractions stained 

with amido schwarz. 

Visual inspection of the gels suggested differences among 

the-five slower-moving bands near the anode. To quantitate 

these differences, microdensitometer readings were taken at 

525 nm and tracings of these readings are shown in figure 2. The 

peaks of the healthy shoot histone bands were much sharper than 
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Fig. 1. Histones from healthy (a) and crown gall- 

infected (b) Vicia faba (broad bean) stem 

tissue. Electrophoresis was carried out at 

4 ma/tube for 6 hr. Gels were loaded with 

32 - 50 ug of histone and stained with 0.7$ 

amido schwarz in 7$ acetic acid. 





17 

Fig. 2. Microdensitometer tracings of histone bands from 

healthy and crown gall-infected Vicia faba stem 

tissue. Band number 1 is at far right; band 

number 9 is at far left. Marker pen gain on 

Quick Scan, Jr. (Helena Laboratories) was set 

at 4; chart paper was on low speed. 
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those of the crown gall histone bands. This "smearing effect" 

was only evident in gels of histone from diseased tissue. It 

cannot be attributable to diffusion of protein within the gel 

since the gels were placed in stain within a few minutes after 

termination of electrophoresis. Nor can it be due to incomplete 

destaining, as all gels were destained for the same time interval. 

As an additional aid in the determination of differences 

among the five slower-moving bands, expanded microdensitometer 

readings were taken by increasing the "gain" of the marker pen 

and by increasing the speed of the chart paper (Figure 3)* 

The percentage of each of the 9 histone bands was calculated 

from the microdensitometer readings as indicated in Materials 

and Methods. An average of the percentage of each band from 

healthy and diseased tissue appears in Table 1. Comparisons of 

corresponding bands were carried out using a Student-t distribution 

(t<-tQ#025» ^>+^.025) with significant differences occurring 

between bands 3> K, and 5* However, if bands 1 through 5 were 

compared collectively, differences were negligible. 

As an aid in identification of histone fractions, the 

migration ratio of each band was computed (Table 2). Migration 

ratio was determined by dividing the migration distance of the 

fastest-moving band into the migration distance of each of the 

other bands. The distance from the top of the separating gel 

to the center of each band was considered the migration distance. 

Tentative band identification was made based on migration 
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Fig. 3* Expanded microdensitometer tracings of histone bands 

from healthy and crown gall-infected Vicia faba 

stem tissue. Band number 1 is at far right; band 

number 5 is at far left. Marker pen gain on 

Quick Scan, Jr. (Helena Laboratories) was set at 10; 

chart paper was on high speed. 
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TABLE 1. Comparison of histone band percentages from healthy 
and crown gall-infected Vicia faba stem tissue on 

polyacrylamide gels.a 

Band 
Number Healthy Crown Gall 

1 2.35 ±0.354 1.95 ±0.071 

2 1.90 ±0.424 2.85 ±1.485 

P 1.80 ±0.849 4.90 +0.566 

ub 9.70 ±2.550 3.60 +1.560 

? 1.95 +0.636 8.90 ±0.707 

6 35.75 ±5.020 36.10 +9.620 

7 15.45 ±4.740 15.65 +1.060 

8 9.05 ±0.354 7.75 +4.600 

9 22.00 ±1.130 18.30 ±3.820 

1-5 20.58 ±3.258 22.92 ±0.731 

aElectrophoresis was performed at 4 ma/tube for 6 hr. 
Each 7 cm gel contained 32 - 30 ug of histone. 

^Significant differences with 95% confidence. 
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TABLE 2. Migration ratios of histone bands from healthy and 
crown gall-infected Vicia faba stem tissue relative 
to the fastest-moving band on polyacrylamide gels.a 

Band 
Number Healthy Crown Gall 

1 0.324 0.471 0.447 0.407 

2 0.561 0.518 0.489 0.453 

3 0.610 0.541 0.521 0.488 

4 O.646 0.588 0.574 0.558 

K 0.707 0.635 0.617 0.593 

6 0.780 0.765 0.745 0.721 

7 0.317 0.812 0.798 0.779 

g 0.37s 0.859 0.851 0.860 

o / 1.000 1.000 1.000 1.000 

aElectroohores 
i 

is was carried out at 4 ma/tube Tor 6 hr 

on 7 cm gels* 
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ratios. Referring to Table 2, the fast-moving band, number 9, 

is most likely f2al, a glycine-arginine-rich histone band of 

low molecular weight. Band number 8, was considered band f3, 

an arginine-rich band. No specific identification could be 

suggested for bands 6 and 7* However, Nadeau, et al. (25), in 

their electrophoretic comparison of plant and animal histones 

referred to the histone bands intermediate between f3 and fl 

bands as ’'plant histones”. In animal tissue, they found two 

histone bands, f2a2 and f2b, between f2al and f3 but found no 

bands between f3 and fl histones. In the present study, bands 

6 and 7 were considered to be plant histones. 

The difference in migration ratios between bands 5 and 6 

was considerably larger (0.130) than the difference between 

bands 4 and 5 (range of 0.037-0.058) or between 6 and 7 

(0.043-0*059)* Thus, bands 1 through 5 may be considered 

sub-fractions of fraction fl, a lysine-rich histone of higher 

molecular weight. 
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CHAPTER V 

DISCUSSION 

Current information points to phosphorylation as the primary 

mechanism of histone modification. Attachment of a negatively- 

charged phosphate group on a positively-charged histone would 

change the conformation of the protein and its binding affinity 

to DNA. As a result, particular genes normally repressed by 

histones could be made available for transcription; histones 

could be replaced by another protein type; or chromatin structure 

could be modified in preparation for DNA synthesis and cell 

division (26). 

Recent evidence suggests that the very lysine-rich histone 

(fl) is apparently phcsphorylated during DNA synthesis. Bradbury, 

et al. (6, 7 ) proposed that fl phosphorylation is the initiation 

step for mitosis by triggering chromosomal condensation. They 

felt that histones are not in control of specific gene transcription 

but rather are involved in maintenance and control of chromosome 

structure. 

The variation in the amounts of lysine-rich bands obtained 

in this study seem to support the idea that an alteration in 

charge and/or size of some histone molecules does result from 

the conversion of a healthy cell to a tumor cell. Since the 

altered histone molecules were of the lysine-rich type, phosphory¬ 

lation could account for the alteration. It is feasible that 
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during conversion, lysine-rich histones could be replaced by 

modified lysine-rich histones or by other protein types. The 

similarity in percentages of histone bands 1 through 5 in 

healthy and tumor tissue suggests that replacement of lysine-rich 

histones with other protein types did not occur. However, whether 

lysine-rich histones were modified by phosphorylation while still 

attached to DNA or were replaced by previously modified lysine- 

rich histones cannot be determined from this datum. 

Srivastava found twice as much FII histone in crown gall 

tobacco tissue cultures than in healthy tissue cultures (37)* 

FII histone was defined as a moderately lysine-rich fraction 

(16? Lys), being intermediate to the fractions FI (21? Lys) and 

Fill {11% Lys). All fractions were eluted from a carbcxymethyl- 

cellulose column. Because of differences in fractionation procedures 

it is difficult to accurately compare Srivastava*s results to those 

in the present study. 

Clubroot of Crucifers, caused by Plasmodiopnora brassicae, 

is characterized by cell hypertrophy and hyperplasia. As in 

crown gall disease, the exact nature of the "growth stimulus" is 

unknown but appears to diffuse in advance of the pathogen. 

'williams et al. (41) made a comparison of the amounts of chromosomal 

protein and DNA in healthy and clubroot-infected cabbage root hair 

cells. Although the DNA content was similar in healthy and diseased, 

there was a 10 - 15? reduction in the histone content of infected 

cells. The lysine-rich fraction of histone declined by 25? in 
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diseased tissue; the arginine-rich fraction remained the same. 

On the other hand, infected tissue contained higher amounts of 

RI'TA and non-histone chromosomal protein and enlarged nucleoli. 

The data suggested that the fungal pathogen may be altering the 

normal transcriptional process in an infected root hair cell. 

Williams, et al. postulated that the "stimulus” could be effecting 

a derepression of the host genome by indirectly or directly 

causing modification and subsecuent removal of lysine-rich histone 

from the DNA. 

In the present crown gall study, the percentages of total 

lysine-rich histones (bands 1 through 5) did not significantly 

vary between healthy and diseased tissue. This suggests that 

there was no net loss of lysine-rich histone from DNA of crowTi 

gall tissue compared to DMA of healthy tissue. 

Increased peroxidase activity in diseased tissue may play 

a role in the alteration of histone charge and/or size. Stahmann 

and Demorest (32) determined that an oxidation product, 3-ciethy- 

leneoxindole, resulting from incubation of indole-3-acetic acid 

with horseradish peroxidase, conjugated with the sulfydryl groups 

of arginine-rich calf thymus histone. When crude calf thymus 

histone was incubated with horseradish peroxidase, catechol, and 

HoOp.and then subjected to electrophoresis, a shift in histone 

bands toward lower mobility was observed. The latter incubation 

mixture apparently oxidized the C-amino groups of lysine molecules 

in calf thymus histone. The shift toward lower mobility could be 
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explained by partial neutralization of positive charges and by 

slight increases in size of histone molecules. These data 

suggested that peroxidase systems could alter the physical and 

chemical properties of histone. A modification of £-amino groups 

could reduce ionic bonding between lysine-rich histone and DNA, 

perhaps leading to changes in transcription. 

The "smearing effect" in gels containing histone from crown 

gall-infected tissue is difficult to explain. As previously 

mentioned, protein diffusion prior to staining and incomplete 

destaining are unlikely. Modifications such as phosphorylation, 

acetylation, and methylation could account for minor changes in 

the molecular weight of histones; however, it is doubtful that 

these modifications are responsible for the extensive size range 

in histone that the smearing effect seems to suggest. Perhaps 

new species of basic proteins are synthesized in crown gall tissue 

as a consequence of derepression of the host genome. 

Proteolytic degradation of histone could produce a wide range 

of polypeptide residues. Amido schwarz stain is amphoteric and 

would bind to amino or carboxyl groups in the residues. If 

partially-degraded histone residues were present in purified 

histone, these residues would have been produced during the 

isolation of chromatin or have already been present on DMA of 

crown gall cells. Cold temperature during chromatin isolation 

should have minimized histone degradation; protease activity 
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would be highly unlikely during acid extraction of histone* It 

is feasible that crown gall tissue could produce higher amounts 

of histone proteases than healthy tissue, perhaps as a result of 

transcriptional alterations* The pressure on cells created by 

hypertrophy and hyperplasia of a gall might force the release of 

preteases which are normally compartmentalized. 

Bartley and Chalkley ( 2) have observed a higher turnover 

rate of histone in actively-dividing calf thymus cells than in 

non-dividing cells. They suggested that the increased turnover 

rate might be due to higher protease activity. Their experiments 

also indicated that lysine-rich histone was the most vulnerable 

to proteolysis of all histone fractions in intact calf thymus 

nucleohistone. 

If a high level of protease activity exists in crown gall 

tissue, then there would likely be partially-degraded histone 

molecules attached to DNA. These molecules could remain attached 

throughout chromatin isolation and be extracted along with the 

non-degraded histones. 
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SUMMARY 

The percentages of each histone species in healthy and 

crown gall-infected Vicia faba stem tissue have been compared. 

Healthy tissue from uninoculated, unwounded broad bean steins and 

crown gall tissue from inoculated steins were harvested at age 

6 weeks. Healthy and diseased stem tissue was minced and then 

homogenized in an isotonic medium. Chromatin was isolated and 

purified by differential centrifugation and by sucrose density 

gradient centrifugation. Histones were extracted from chromatin 

with 1.0N HpSO^; histone sulfate was precipitated in ice cold 

ethanol. Fractionation of histones was accomplished by discon¬ 

tinuous gel electrophoresis at pH 4.3 on 15^ polyacrylamide gels 

containing 8M urea* Gels were stauned viitn 0.7^ amido schv.arz 

in 7/b acetic acid and electrically destained. 

Nine histone bands were resolved in healthy and diseased 

stem tissue. Histone bands were scanned at 525 nm on a microdensi¬ 

tometer to quantitate band percentages. The percentages of corres¬ 

ponding bands in healthy and crown gall tissue were compared using 

a student-t distribution at the 5? level of significance. 

Significant differences existed between three bands, all of which 

were tentatively identified as. subfractions of lysine-rich histone 

based on their migration ratios. The modification of histone by 

phosphorylation could account for the quantitative differences 

among these histone bands. Variation in histone bands between 
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healthy and tumor tissue would seen to be an effect of the 

conversion process rather than the tumor-inducing principle. 

The gels containing histone from crown gall histone exhibited 

a "smearing effect’1 which was not visible in gels of histone 

from healthy stem tissue. It has been speculated that the 

smearing effect could be the result of high histone protease 

activity in crown gall tissue. 
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APPENDIX A 

HISTONES 

General Characteristic?. The histones, basic proteins 

associated ionically with DMA (deoxyribonucleic acid), are present 

in eukaryotes but not in prokaryotes. Twenty percent or more of 

the amino acids in a histone molecule are the basic amino acids 

histidine, lysine, and arginine; but the latter two predominate. 

In addition, histones contain no tryptophan and very small amounts 

of cysteine. 

The species of histones have been enumerated and characterized 

by polyacrylamide gel electrophoresis. It is generally accepted 

that there are 5 histone fractions in vertebrates containing 

approximately 10-12 sub-fractions (36). Each fraction is distinctive 

in its lysine and arginine content and molecular weight. Calf 

thymus histone will be discussed here because its histone band 

pattern on acrylamide gels is typical of other vertebrate histones 

characterized to date (34> 36). Histone fractions will be described 

in order of the fastest-moving to the slowest-moving fraction. 

The most rapidly-moving fraction during electrophoresis is a 

glycine-arginine rich fraction (GAR) containing 9.8^ lysine, 13•!% 

arginine, and a molecular weight of about 11,000. This histone is 

also known as f2al or IV and may have one or two sub-fractions. 

The next three fractions band closely together because of 

their similarity in size. The fastest-moving of these is an 
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arginine-lysine rich fraction known as AL, f2a2, and Ilbl. It 

has approximately ecual amounts of lysine and arginine (9-11%), 

a molecular v:eight of about 14,000, and one sub-fraction* 

The second of this group is a slightly lysine-rich fraction 

containing one sub-fraction (SLR, f2b, IIb2). Its molecular 

weight is approximately 13,800; it contains 16% lysine and 6.6% 

arginine. 

The third fraction of the cluster of 3 is arginine-rich 

containing up to 3 sub-fractions. It contains 9*6% lysine and 

13-3% arginine and has a molecular weight of 15,000. It is 

symbolized as AR, f3, or III. 

The slowest-moving fraction of the 5 fractions (VLR, fl, I) 

has 26.8% lysine, 7% arginine, and 3-A sub-fractions. Its 

molecular weight ranges from 19,500 to 21,000. 

Electrophoretic comparisons of histones from plant and 

vertebrate tissues have revealed differences (32, 35). Nadeau, 

et al. (35) studied electrophoretic mobilities and molecular 

weights of histone from barley, leek, onion, pea, radish, rye, 

wheat, calf thymus, and rat liver on polyacrylamide-urea and 
f 

polyacrylamide-SDS gels. Fractions f2al (GAR) and f3 (AR) were 

very similar in the plant and animal tissues. Sub-fractions of 

fraction fl (VLR) in plants were higher'in number and in 

molecular weight (22,000-25,000). Fractions f2a2 (AL) and f2b (SLR), 

normally present between fractions f2al and f3 in animal tissues, 

were not present in the plant tissues. Instead, two to three bands 
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appeared between fractions f3 and fl. These bands were referred 

to by the researchers as "plant histones’'. Additional work is 

required to determine whether these histone bands are modified 

forms of f2a2 and f2b or a different class of histone unique 

to plants. 

Fambrough and Bonner (14) obtained 8 fractions or species 

of peabud histone by discontinuous gel electrophoresis. Properties 

such as amino acid composition, number of tryptic peptides, 

electrophoretic mobility, and order of elution on gel-filtration 

chromatography indicated very limited heterogeneity of the histones. 

The amino acid sequences of all histone fractions have been 

determined. There are two major segments in each histone sequence 

(6). One segment contains a large amount of basic residues (+ charge) 

and helix destabilizing residues (i.e. proline, glycine). The other 

segment is dominated by low basicity, apolar (leucine, valine) 

and acidic residues. Specific segments of the histones rich in 

basic residues are apparently involved in interactions with DNA 

while the apolar segments are involved in conformational changes 

and interhistone interactions. 

The manner and location of attachment of a histone molecule 

to DNA has yet to be determined. Evidence so far indicates that 

the histone molecules probably bind at the major groove-of DNA 

although this investigation is beyond the means of current fiber 

X-ray diffraction and electron microscopy technioues (4). Olins 

(33) suggested that fl histone probably binds within the large 
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groove of DNA based on evidence from dye-binding, glucosylation, 

and actinomycin D-binding experiments. Sung and Dixon (53) 

proposed a model of the binding of f2al (GAP.) to DNA. The N 

terminal portion of the GAP histone (strongly basic) v;ould fit into 

the major groove of DNA and bind to some of the phosphate groups. 

A slight lapse of a-helicity would be required to allow the histone 

to follow the helical pattern. The less basic half of a histone 

molecule could also lie in the major groove and bind additional 

phosphates. 

Apparently 50-60$ of the phosphate groups in DNA are bound 

when DNA is saturated with histone molecules. The other phosphates 

behave as free phosphates, being accessible to dyes and nucleases. 

It may be that more than 50-60$ of DNA is covered by histones. 

Synthesis Location and Turnover. Periods of DNA and histone 

synthesis prior to cell division were observed to closely coincide 

in onion root meristem (3)» Histones were marked with tritium- 

labelled lysine and arginine; DNA with tritium-labelled thymidine. 

Synthesis comparisons were made by determining times required for 

cells with marked chromosomes to begin and terminate division 

stages. An additional period of chromosomal protein synthesis 

occurred late in interphase. Robbins and Borun (42) also noted 

a correlation between initiation of histone and DNA synthesis in 

HeLa cells. 

There is considerable evidence to support a cytoplasmic 

location for histone synthesis. Based on pulse-chase labelling 
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of cells in G1 and S phases and on examination of cytoplasmic 

polysomes labelled with ^-4c tryptophan and 3h lysine, histones 

were apparently made in the cytoplasm on small polysomes. 

Additional evidence for cytoplasmic synthesis of histone 

was provided by Gallwitz and Mueller (16) in their work with HeLa 

cells. Three messenger RNAfs (ribonucleic acid) found only on 

microsomes which v;ere actively synthesizing histone were resolved 

on polyacrylamide gels with 0*5% agarose. Their molecular sizes 

corresponded to the size of a messenger RNA needed to code for 

proteins of the histone class. 

Nuclei as a site of histone synthesis cannot be ruled out. 

Reid and Cole (40) felt that the calf thymus nucleus was the site 

of synthesis of lysine-rich histone. The lack of sensitivity of 

this histone to RNase suggested that synthesis wras not occurring 

on cytoplasmic microsomes attached to the nuclear membrane. 

Lysine-rich histone synthesis was shown to require Na+ ion; previous 

work had indicated that Na+ ion was specifically recuired for 

amino acid transport across the nuclear membrane. 

In studies of onion root meristem by Block, et al. (3)> 

histone proteins appeared to be synthesized in the nucleus or to 

migrate there shortly after synthesis (within one hour after uptake 

of 3r lysine and arginine). 

Experiments by Gurley, et al. (17) suggested that histone fl 

could be made in cytoplasm and in nuclei. Histone fl was extracted 

from chromatin, nucleoplasm, and polysomes of Chinese hamster cells. 
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Pulse-labelling experiments demonstrated that the fl found in 

chromatin was the most newly-synthesized, fl in nucleoplasm was 

intermediate in age, and fl in polysomes was the oldest. The fl 

associated with polysomes had much less phosphorylation than did 

chromatin fl. These differences suggested that polysomal fl was 

a distinct fraction of total cellular fl (about 10%) and might 

constitute a pool of non-chromatin-bound fl. 

Turnover rates of histones and DNA in normal and tumorous 

rat tissues were studied by Byvoet (8). Histones were labelled 

with 1/rC lysine and DNA with 12'I (iodo-2»-deoxyuridine). Histone: 

DNA ratios remained near unity in all types of normal and tumor 

tissue. Data indicated that the biological breakdown of histones 

and DNA may be linked after they are combined to form deoxyribo- 

nucleohistone• 

.hatever the turnover rate of histones, a mechanism must 

exist to remove histones from DNA. One method of removal could 

be competition from a stronger cation (i.e. a slightly modified 

histone). This occurs in the replacement of histone fl by protamine 

in trout spermatogenesis. Another possibility for removal is 

competition by a strong anion (i.e. NHCP). A third method could be 

by proteolytic degradation, fuch degradation has been observed in 

trout spermatogenesis but it was preceded by phosphorylation of 

the histone. The phosphorylation did not seem to affect binding 

to DNA but may have been a signal for histone protease action (12). 

DNA Template Regulation. One of the most common arguments 



42 

for assigning a role of repressor-derepressor to histones has been 

their ability to regulate RITA synthesis in vitro* Dahmus and 

Bonner (9) studied the template activity of chromatins from rat 

liver, rat spleen, and calf thymus during the removal of chromo¬ 

somal proteins. As the chromosomal proteins were removed by 

increasing the ionic strength of the solution with sodium perchlorate, 

template activity increased. The increase in activity closely 

paralleled the removal of protein from the DNA. If rat liver 

chromatin was treated with acid to remove only histone proteins, 

the template activity of the DM-nonhistone protein complex was 

almost identical to that of completely deproteinized DNA. It 

appeared that histones were responsible for IlITA synthesis control. 

In contrast, Johns and Hcare (20) felt that the increase in 

transcription was probably a matter of accessibility or solubility 

of the DNA complex. They observed that when the histone:DNA ratio 

was raised with the addition of fl and f3 histone, inhibition of 

RITA synthesis occurred. However, DNA complex precipitated as 

histone was added. Peak transcription inhibition was present v/hen 

fl histone: DNA ratio, was 0.8 and f3 hist one: DNA ratio was 1.0-1.5* 

At higher ratios the trend reversed and the DNA complex apparently 

became more soluble allowing an increased rate of RITA synthesis. 

Differences■of opinion exist as to whether the various 

histone fractions show specificity in template activity control. 

Spelsberg and Hnilica (48) selectively removed histone fractions 

indicating that not all histones were involved in genetic restriction. 
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Removal of lysine-rich histones (fl) yielded no significant change 

in available template of rat thymus chromatin. Dissociation of 

slightly lysine—rich or arginine-rich histone increased available 

template; however, more derepression resulted from removal of 

slightly lysine-rich histone. After complete dehistonization, 

some residual restriction remained as compared to naked DNA• These 

residual repressors later proved to be non-histone chromosomal 

proteins. 

Shin and Bonner (47) found that arginine-rich and lysine-rich 

histone were ecually effective in preventing transcription of 

calf thymus DNA. 

Langan, et al. (29) separated two lysine-rich histone fractions 

from rabbit thymus by ion-exchange chromatography. The two fractions 

differed in their ability to be phosphorylated with a liver histone 

kinase. The readily-phosphorylated fraction contained serine in 

a location shown to be a major site of phosphorylation. The other 

fraction contained alanine in this position and did not show 

phosphorylation. This difference in primary structure indicated 

that these histone fractions were distinct species and might have 

specificity^ of function. 

Histone Modifications. Phosphorylation has been the most 

commonly observed modification and is probably the most important. 

All histone fractions are able to undergo phosphorylation but fl 

histone has been the most frequently-studied. Phosphates are 

esterified to hydroxyl groups of serine and threonine. Placement 
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of a negatively-charged phosphate moiety on a positively-charged 

histone protein would be expected to change the protein conformation 

and binding affinity to DNA. These changes could: (1) activate 

specific genes which are normally repressed by histones; (2) modify 

chromatin structure in preparation for DNA synthesis and cell 

division; or (3) aid in removal of histones from DNA to allow 

replacement by another protein type (10). 

A positive correlation has been noted between the growth 

rate of Morris hepatoma and the degree of phosphorylation of one 

sub-fraction of fl histone (34)• The sub-fraction was apparently 

only phosphorylated during DNA synthesis. Since the phosphorylation 

was largely present in rapidly replicating tissues and essentially 

absent in stationary tissues, cell division seemed related to this 

modification. 

Bradbury, e_b al. (7) performed measurements of the net 

phosphorylating activity of nuclei of Physarum oolycephalum (a 

slime mold), isolated at different stages of the mitotic cycle, 

and acting on added calf thymus fl histone. They concluded that 

fl phosphorylation initiated chromosome condensation. It was 

proposed that fl phosphorylation is the initiation step for mitosis 

and this step is triggered or controlled by the net fl phosphory¬ 

lating enzyme activity. . They felt that it may be possible to 

stimulate mitosis v:ith purified phosphokinase and to inhibit 

mitosis with fl histone phosphatase. 

DeLange and Smith (10) felt that phosphorylation of histone 
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fl may be related to DNA synthesis while phosphorylation of other 

histones may correlate to processes of RNA synthesis. 

Histone modification by acetylation has been observed in all 

histones except very lysine-rich histones. Acetylation is known 

to occur at two locations: (1) amino terminal serine residues 

and (2) C-amino groups of the amino acid lysine. Acetyl groups 

of the £-amines of lysine seem to be metabolically active and 

turnover at varying rates. No important physiological role can 

currently be assigned to acetylation (34)* 

Hethylation, a third type of histone modification, is 

considered to be relatively unimportant because of the small size 

of a methyl group. Methylation tends to occur late in the cell 

cycle while phosphorylation and acetylation usually occur prior 

to or during DMA synthesis (34). 

Histone modifications seem to play a role in chromosome 

metabolism, perhaps in the transport of histones into the nucleus 

or in their binding to and removal from DMA (12). However, the 

precise functions of the modifications have yet to be determined. 

Histone Roles. It is known that histones are composed of 

relatively few unique polypeptides. In a differentiated eukaryotic 

cell, BO-90$ of the genome is normally repressed (4)« Histones 

would seem' to be "general" gene suppressors, probably involved -in 

maintaining and controlling chromosome structure (6). Other more 

specific mechanisms are implicated in the maintenance of the 

10-20$ of active genome. 
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According to Joins (19)> there is no real evidence in vivo 

to show that histones need to be removed from DMA to enable it 

to serve as a template for RNA synthesis. Therefore, the structure 

of chromatin must be important. V.Tien chromatin is condensed during 

mitosis, it is inactive. During interphase, the chromatin is more 

diffuse, allowing parts to be copied and parts to be rendered 

inactive. X-ray studies have indicated that the nucleoprotein 

molecule has straight-chained and supercoiled portions, although 

there is presently no means to determine the relative amounts of 

each. It seems feasible that the histones cause supercooling. 

A large molecule such as RNA polymerase would have difficulty 

negotiating supercoiled chromatin. Other macromolecules (perhaps 

non-histone chromosomal proteins) having the necessary specificity 

to recognise a particular gene could cause derepression by breaking 

the weak bonds of the supercoil. 

A hypothesis to explain supercoiling has been suggested by 

Bonner and Garrard (4). It is known that a histone molecule 

contains a high concentration of basic amino acids at one end and 

fewer basic amino acids at the other. The attraction between 

the highly basic end of a histone and the negative charges of the 

DNA phosphates could result in a tight complex causing that region 

of the -DNA double helix to slightly shorten compared to the native 

DNA configuration. On the other hand, the less basic end of a 

histone molecule would not bind as tightly, resulting in less 

shortening at that point. A series of unequal bindings might cause 
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a shift in the direction of the long axis of the DNA double helix 

resulting in supercoiling. 

Another structural role for histones v/as proposed by Littau, 

et al. (31). They showed that removal of lysine-rich histone 

from condensed chromatin in calf thymus lymphocyte nuclei caused 

the chromatin to dissociate into a diffuse network of fibrils. 

If lysine-rich histone was restored, clumps of condensed chromatin 

were again present. Removal and replacement 01 arginine-rich 

histones did not affect this change. Observations were made under 

the electron microscope. These results indicated to the investi¬ 

gators that lysine—rich molecules had combined with phospnate 

c*r011 id^ of DNA to cross—link DNA double nsii^GS wnile the arginine 

rich histone molecules combined with phosphate ^roup^ &long a 

double helix. The ratios of arginine to lysine-rich histone were 

si mi lar in condensed and diffuse chromatin. This saggebted that 

although the lysine—rich histone was noo cro^s-.Liming diffuse 

chromatin, it was still in contact with DNA. 

Histones may also be involved in the formation of metaphase 

chromosomes (37). Histone f3 (AR) in organisms as highly evolved 

as rodents contains one cysteine residue while f3 in higher mammals 

contains two cysteine residues. In interphase chromosomes, the 

cysteine residues all contain sulfhydryl groups.(reduced form). 

In metaphase chromosomes, many of the cysteines are present as 

disulfides because of covalent bonding with other molecules in the 

supercoil. These disulfide bonds may serve to stabilize the 
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the superstructure of metaphase chromosomes. 

In addition, histones probably stabilize the DMA double helix 

against thermal denaturation and assist in protecting it from 

radiation damage. Hnilica (18) provided an overview of the inter¬ 

action of the four macromolecules contained in chromatin. If 

histones are genetic repressors, then non-histone chromosomal 

proteins are associated with the less permanent kind of repression. 

RNA would provide the site of interaction with a specific genetic 

locus on DMA. NHCP would protect DMA from close association with 

histones in the area of the DMA-RNA interaction site, allowing 

transcription. All remaining DMA loci not protected by NHCP 

would be associated with histones, rendering them inactive. The 

need for specificity of histones associated with DMA would be 

small. Derepression could be achieved by chemical modifications 

of histones (phosphorylation, etc.) resulting in exposure of a 

particular part of DMA to interaction with NHCP. 

No role in chromatin structure or function can be assigned 

to the histones with certainty at the present time. However, it 

seems more probable that histones are general suppressors than 

specific ones. 
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appendix b 

NON-HISTONE CHROMOSOMAL PROTEINS 

general Characteristics. Non-histone proteins include common 

enzymes of nucleic acid and histone metabolism, structural proteins 

and non-histone chromosomal proteins. Non-histone chromosomal 

proteins (NHCP) or hertones* (12) are rich in glutamic and aspartic 

acids or their amides; thus they tend to be acidic in nature. 

The precise number of species of NHCP are unknown for any tissue 

due to limited methodology. However, two-dimensional polyacrylamide 

gel electrophoresis will prove useful in future work. 

The range of molecular weights is wide. In HeLa cells, 

estimated weights by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis was 15,000 - 180,000 with £5£ of the NHCP over 

40,000 (2). eights of rat liver NHCP ranged from 15,000 - 

100,000 (1,3) • Although isolation and fractionation of NHCP have 

been hampered by their tendency to aggregate with DIIA, histones, 

and one another, it is fairly certain that non-histone chromosomal 

proteins are more heterogeneous than histones. 

Work performed by Farber, et al. (15) suggested that the 

chromatin proteins regulating transcription are located in the 

major groove of DMA. A reporter molecule, which binds exclusively 

to the minor DMA groove, was shown not to interfere with transcription 

*Term suggested by R. D. Cole based on the idea that this class of 
proteins may be involved in more delicate aspects of gene 
regulation than histones. 



50 

of chromatin from HeLa 53 cells by exogenous E. coli RNA polymerase. 

Synthesis and Turnover of NHCP. The location of the synthesis 

of non-histone chromosomal proteins is probably in the cytoplasm. 

Kawashima, et al. (23) utilized pulse chase studies of labelled 

amino acids to observe protein transfer in mouse ascite tumor cells. 

Radioactivity was seen to increase greatly in nucleoli and to a 

lesser extent in extranucleolar nuclear fractions. At the same 

time, a corresponding decrease of radioactivity occurred in the 

cytoplasmic fraction. These results strongly suggested to the 

researchers that the majority of protein was synthesized on the 

outside of the nucleoli, probably in the cytoplasmic polysomes. 

Similar results \"ere obtained by Stein and Baserga (51), who 

concluded that more than 90%, of the nuclear proteins including 

acidic chromosomal proteins were synthesized in the cytoplasm 

and transferred to the nucleus. These studies were based on pulse 

labelling of HeLa S3 cells with >H leucine. 

Evidence seems to suggest that non-histone proteins are 

synthesized and turned-over much more rapidly than histones. 

Determinations of synthesis and turnover rates have been carried 

cut during the four cell cycle phases (pre-replication (Gl), DNA 

replication (S), post-DNA synthesis (G2), and mitosis) using 

radioactive amino acid incorporation by Rovera and Baserga (43)• 

Resting WI-38 human fibroblast cells were stimulated to grow by 

changing the growing medium. Incorporation rates increased during 

Gl with a maximum just prior to S, reflecting an increase in rates 
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of NHCP synthesis. Acidic proteins that were synthesized during 

the first hour after stimulation had a turnover time of less than 

four hours while those proteins in non-stimulated cells vere stable 

for at least 12 hours. In a similar study. Levy, et al. (30) 

observed an increase in non-histone chromatin protein as early as 

1 to 3 hours after the addition of phytohemagglutinin to guinea 

pig lymphocytes. No increase in histone synthesis occurred. 

7'ork by Borun and Stein (5), using pulse-chase labelling 

techniques in HeLa S3 cells indicated that the amount of protein 

synthesized, transported, and retained in the acidic residual 

chromosomal protein fraction was higher immediately after mitosis 

and later in G1 than in 5 or (12 phases. During S phase, 25/© of 

the protein entering the acidic chromosomal protein fraction had 

turned-over after two hours, while up to 40/^ entering the fraction 

in mitosis, G1 and G2 had left within two hours. 

The increase in synthesis of the nuclear acidic proteins after 

cell stimulation is apparently limited to particular classes of 

protein as revealed in polyacrylamide gel profiles of human and 

mouse fibroblasts (5&). 

’..hen actinomycin D, an inhibitor of DNA-dependent HNA synthesis, 

was added to dividing cells, it did not reduce the increased rate 

of NHCP synthesis normally occurring early in Gl. Instead, NHCP 

synthesis during later phases was reduced. This implied that initial 

synthesis may take place on preformed templates. When actinomycin 

D was applied to HeLa S3 cells during late G2, the synthesis of 
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several classes cf NHCP during the subsequent G1 period was not 

suppressed. Apparently, then, unaffected NHCF species are synthesized 

on stable species of mRNA, transcribed prior to mitosis (when 

cessation of mRNA synthesis and disaggregation of polyribosomes 

normally occurs), and reactivated during G1 phase (54). 

Chile histone synthesis appears to be coupled to BNA replication, 

NHCP synthesis is apparently not. In both continuously-dividing 

cells and stimulated ouiescent cells, NHCP synthesis has been shown 

to continue throughout the cell cycle (1, 5, 30, 43> 50). 

Effects of NHCP on Chromatin Template Activities. Reconsti¬ 

tution experiments seem to be the predominant method of investi¬ 

gation into the control of template activity by non-histone 

chromosomal proteins. Template activity was found higher in HeLa 

■S3 cell chromatin reconstituted with S phase NHCP than with mitotic 

NHCP (50). Also, template activity was higher in NT-38 human 

fibroblast chromatin reconstituted with NHCP from human fibroblast 

cells one hour after proliferation stimulation than in chromatin 

reconstituted with NHCP from non-dividing fibroblast cells (53)• 

However, in both stimulated and non-stimulated fibroblast cells, 

chromatin reconstituted with histones isolated from various cell 

cycle stages did not show template activity differences. 

It is known that histones are more tenaciously-bound to DNA 

during mitosis than during S phase. In addition, differences 

have been observed in histone binding between chromatin reconsti¬ 

tution with mitotic NHCP and with S phase NHCP. Since template 
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activity of chromatin reconstituted with mitotic phase NHCP is 

lower than with S phase NHCP, one could speculate "that NHCP are 

involved with mediation of the binding of histones to DNA (54). 

Spelsberg, et al. (49) found that the residual repressors 

remaining on D2IA after removal of histones by salt extraction were 

non-histone chromosomal proteins. Using artificial chromatins 

that were rat liver and rat thymus hybrids, they demonstrated that 

the NHCP remaining on DNA determined the pattern of DNA restriction 

and were essential for tissue-specific restriction. 

Template specificity of NHCP was demonstrated in experiments 

involving hybridization of NHCP and chromatin from normal and 

walker tumor rat liver tissues (27). V/hen Walker tumor non-histone 

chromosomal protein was allowed to activate normal rat liver 

chromatin, the RNA produced was similar to that produced by talker 

tumor chromatin. Similarly, when normal rat liver NHCP activated 

Walker tumor chromatin, the RNA produced was similar to normal rat 

liver RNA. 

Data by Kamiyama and bang (21) suggested the activation of 

the genome by the addition of NHCP. RNA transcribed from chromatin 

stimulated by NHCP had a different nucleotide composition and 

hybridized more with homologous DNA than RNA transcribed from non- 

sfimulated chromatin. Transcribed RNA from activated chromatin 

coded different polypeptides which had longer average chain lengths 

than polypeptides coded by RNA from control chromatin. Latter 

study based on ribosomal amino acid incorporation (in vitro). 
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Further evidence pointing toward the involvement of non-histone 

chromosomal proteins in a repressor-derepressor function is that 

active chromatin has a higher content of NHCP than inactive 

chromatin (34, 52). 

Specific NHCP changes have been noted from interaction with 

carcinogens, drugs, plant and mammalian hormones. In regard to 

the role of NHCP in the mechanism of hormone action, it is suspected 

that certain non-histone chromosomal proteins of target chromatins 

serve as acceptors for hormone-receptor complexes while others are 

synthesized in response to hormonal stimulation (34)• 

Non-Histone Chromosomal Phosphoproteins. An important 

modification to non-histone chromosomal proteins that has been 

commonly observed is phosphorylation. According to Langan (28), 

over 90% of the nuclear protein-bound phosphorus is associated 

with NHCP, mainly in the form of phosphoserine which composes 

about 5% of amino acid residues. 

Nuclear phosphoproteins demonstrate species specificity in 

patterns of phosphorylation, electrophoretic mobilities, and DMA 

binding within the same species. The non-histone chromatin 

phosphoproteins from bovine thymus, liver and brain were shown 

to be highly heterogeneous based on mobilities on 10/5 CDS- acrylamide 

gels and on (3?p) radioactivity profiles (39)* 

Teng, et al. (57) found that patterns of phosphorylation of 

individual acidic proteins varied from one tissue to another. 

Further, that phosphorylated acidic proteins prepared from rat 
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liver and kidney nuclei formed complexes v/ith rat liver DNA. 

Little or no binding occurred betv;een rat liver phosphoproteins 

and DMA from calf thymus, human placenta, dog liver, or bacteria. 

The phosphorylation of non-histone chromatin proteins in 

HeLa S3 cells was investigated by Platz, et al. (3B) during Gl, 

early and late S, G2, and mitosis. Phosphorylation rates were 

at a maximum in Gl and G2, somewhat less during 5 phase, and 90% 

lower during mitosis. Acrylamide gel analysis indicated that 

particular species v/ere phosphorylated during particular phases 

of the cell cycle. 

In a 1966 study by Kleinsmith et al. (25), it was shown that 

3-^P-labelled orthophosphate could be incorporated into proteins 

of calf thymus nuclei and that phosphorylation was independent of 

protein synthesis. The uptake of phosphorus required energy from 

ATP. Once incorporated, the phosphate groups turned over rapidly; 

this turnover was also energy dependent. 

Considerable evidence exists for the involvement of phosphory¬ 

lated non-histone proteins in gene activation: 

1) There is a correlation between phosphorylation and gene 

activity. Kleinsmith, et al. (26) observed an increase in the 

rate of phosphorylation and dephosphorylation of nuclear proteins 

within a few minutes after gene activation of human lymphocytes 

was induced by phytohemagglutinin (PHA). 

2) Stimulation ENA synthesis results from the addition of 

non-histone phosphoproteins in vitro (28, 41, 57)• bThen Shea and 
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Kleinsmith (46) added phosphorylated non-histone chromatin proteins 

from rat liver to a cell-free system containing rat liver RNA 

polymerase and rat DNA, stimulation occurred. If other DNA species 

v;ere used (i.e. Ih coli, calf, salmon), no stimulation occurred, 

implying specific recognition of DNA sites by the NHPP. 

3) Removal of phosphate groups from NHPP abolished the RNA 

synthesis in vitro. In the latter study. Shea and Kleinsmith (46) 

utilized alkaline phosphatase to remove 20-30% of the protein- 

bound phosphate groups. 

As yet, however, it is not known definitely whether NHPP 

have the capacity to control gene read-out. DeMorales, et al. (11) 

felt that phosphorylation of NHGP was probably involved in the 

initial events leading to cellular proliferation. In their exper¬ 

iments with baby hamster kidney cells, the peak in phosphorylation 

of total proteins coincided with the maximum in DNA synthesis. 

However, the highest peak in phosphorylation of non-histone 

chromosomal protein was sin: hours earlier than the maximum of 

DNA synthesis. A second lower peak in UUCP phosphorylation did 

correspond to the DNA and RNA synthesis maximums. 

The regulation of phosphorylation requires kinases (to 

cs.talyze the addition of phosphate groups), phosphatases (to 

catalyze the removal of phosphate groups) and ATP (to yield pnosphate 

groups and supply energy). It has been determined that specific 

kinases are required in the phosphorylation of specific non-histone 

chromosomal proteins. 
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Kish and Kleinsmith (24) found 11 distinct regions of kinase 

activity in non-histone chromatin phosphoproteins from bovine liver. 

The addition of cyclic AMP, which is known to mediate the effects 

of hormones and other agents on cell activity, caused stimulation 

in 5 of the 11 kinase regions and inhibition in the other 6. Tvro 

protein kinases that catalyze the phosphorylation of specific 

seryl and threonyl residues of nuclear non-histone proteins were 

found to be associated with rat liver chromatin by Takedo, et al. 

(56). The two enzymes could be differentiated by substrate 

specificities. In contrast, Ruddon and Anderson (44) obtained four 

kinase activities in the acidic nuclear protein fraction extracted 

from rat liver nuclei, each distinct on the basis of pH optimum 

and substrate specificity. 

Kaplowitz, et al. (22) obtained a 5 to 10 fold stimulation 

in phosphorylation of calf thymus non-histone chromosomal protein 

in vitro if they added calf thymus histone. The most effective 

stimulator of phosphorylation was fl histone, although all other 

histone fractions were capable of stimulation. The histones seemed 

to be acting in some way to make more phosphorylation sites available. 

A current theory to explain control of transcription suggests 

an interaction between non-histone chromosomal proteins and histones. 

The histones may stimulate phosphorylation of NHCP. This increase 

in phosphorylation would increase negative charges on NKCP and 

strengthen ionic bonding between non-histone phosphoproteins and 

histones. This additional attraction might also displace histone 
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from the DNA double helix, allowing gene transcription to increase (54)• 

This theory would seem to require specificity of phosphorylation 

of NKCP attached to DNA or perhaps pre-phosphorylated ITHCP binding 

to specific sites on the DNA. As yet, specificity of NHPP binding 

to DNA covered with histones has not been demonstrated. 

Baserga and Stein (l) have put forth a hypothesis concerning 

the overall control of cell division in mammalian cells. A 

stimulus reacts with the cell membrane causing a change which 

results in the loss of certain components of the cytoplasm. Among 

the lost components is a postulated macromolecule which inhibits 

translation of a pre-existing HNA template (i.e. interferon 

inhibits viral RITA translation). Thus, the pre-existing RNA 

template is translated and an acidic protein is synthesized 

independent of gene activation. The acidic protein is transferred 

to the nucleus where it binds at the major groove of DNA and 

activates a segment of the genome resulting in rounds of HNA and 

protein synthesis leading to the onset of DNA synthesis and cell 

division. 

Although the precise roles of non-histone chromosomal proteins 

have not been established, it does seem likely that they play 

an extremely important role in gene activation and regulation 

in the cell. 
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