1,197 research outputs found

    Heavy ion induced Single Event Phenomena (SEP) data for semiconductor devices from engineering testing

    Get PDF
    The accumulation of JPL data on Single Event Phenomena (SEP), from 1979 to August 1986, is presented in full report format. It is expected that every two years a supplement report will be issued for the follow-on period. This data for 135 devices expands on the abbreviated test data presented as part of Refs. (1) and (3) by including figures of Single Event Upset (SEU) cross sections as a function of beam Linear Energy Transfer (LET) when available. It also includes some of the data complied in the JPL computer in RADATA and the SPACERAD data bank. This volume encompasses bipolar and MOS (CMOS and MHNOS) device data as two broad categories for both upsets (bit-flips) and latchup. It also includes comments on less well known phenomena, such as transient upsets and permanent damage modes

    Changes in Severity of Pelvic Floor Dysfunction after Hip Surgery

    Get PDF
    Introduction: Despite growing evidence that suggests an association between hip pathology and pelvic floor disorder (PFD), the comprehensive effects of hip surgery on PFD symptoms are not well understood. The primary purpose of this study was to report the role of surgical hip procedures on the severity of PFD symptoms. Methods: A prospective database of demographic and outcome data for all female patients that were operated on between 2019-2020 at a single institution was queried. The PDFI-20 was used to assess symptom severity, and cases with both pre and postoperative surveys were included (n=62). MCID was used to determine significance of change in PDFI-20 score. Results: All patients were female and mean age was 50.1 years. 40 patients had a THA, 10 had a PAO, 9 had a hip arthroscopy, 2 had a surgical hip dislocation, and one had abductor repair and reconstruction. The pre- and postoperative PFDI-20 scores for patients who underwent THA were 40.4±40.1 and 31.5±35.8. The pre- and post-operative PFDI-20 scores for patients who underwent PAO were 10.6±16.9 and 5.3±12.4. The pre- and post-operative PFDI-20 scores for patients who underwent hip arthroscopy were 7.2±12 and 15.2±25.9. The pre- and post-operative PFDI-20 scores for patients who underwent surgical hip dislocation were 41.7±58.9 and 39.1±55.2. The pre- and post-operative PFDI-20 scores for patients who underwent abductor repair and reconstruction were 33.3±0 and 113.5±0. Conclusion: A subset of patients undergoing hip surgery do have baseline pelvic floor dysfunction. We did not find a significant improvement from pre and post op in our patient population. Mean PFDI-20 scores improved in patients who underwent THA, PAO, and surgical hip dislocation. This study demonstrates that the impact of hip surgery on PFD symptoms in patients with hip pathology should be considered, with further research required to fully characterize this relationship

    The EvoDevoCI: A Concept Inventory for Gauging Students’ Understanding of Evolutionary Developmental Biology

    Get PDF
    The American Association for the Advancement of Science 2011 report Vision and Change in Undergraduate Biology Education encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary developmental biology, or “evo-devo.” To assist in efforts to improve evo-devo instruction among undergraduate biology majors, we designed a concept inventory (CI) for evolutionary developmental biology, the EvoDevoCI. The CI measures student understanding of six core evo-devo concepts using four scenarios and 11 multiple-choice items, all inspired by authentic scientific examples. Distracters were designed to represent the common conceptual difficulties students have with each evo-devo concept. The tool was validated by experts and administered at four institutions to 1191 students during preliminary (n = 652) and final (n = 539) field trials. We used student responses to evaluate the readability, difficulty, discriminability, validity, and reliability of the EvoDevoCI, which included items ranging in difficulty from 0.22–0.55 and in discriminability from 0.19–0.38. Such measures suggest the EvoDevoCI is an effective tool for assessing student understanding of evo-devo concepts and the prevalence of associated common conceptual difficulties among both novice and advanced undergraduate biology majors

    The EvoDevoCI: A Concept Inventory for Gauging Students’ Understanding of Evolutionary Developmental Biology

    Get PDF
    The American Association for the Advancement of Science 2011 report Vision and Change in Undergraduate Biology Education encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary developmental biology, or “evo-devo.” To assist in efforts to improve evo-devo instruction among undergraduate biology majors, we designed a concept inventory (CI) for evolutionary developmental biology, the EvoDevoCI. The CI measures student understanding of six core evo-devo concepts using four scenarios and 11 multiple-choice items, all inspired by authentic scientific examples. Distracters were designed to represent the common conceptual difficulties students have with each evo-devo concept. The tool was validated by experts and administered at four institutions to 1191 students during preliminary (n = 652) and final (n = 539) field trials. We used student responses to evaluate the readability, difficulty, discriminability, validity, and reliability of the EvoDevoCI, which included items ranging in difficulty from 0.22–0.55 and in discriminability from 0.19–0.38. Such measures suggest the EvoDevoCI is an effective tool for assessing student understanding of evo-devo concepts and the prevalence of associated common conceptual difficulties among both novice and advanced undergraduate biology majors

    Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Get PDF
    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology

    Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Get PDF
    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology

    Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Get PDF
    In this study we used surveys of evo-devo experts to identify the core concepts of evo-devo and outline an underlying conceptual framework. We also use interviews and surveys of conceptual difficulties with these concepts. To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology
    • …
    corecore