5 research outputs found
A Total Lightning Perspective of the 20 May 2013 Moore, Oklahoma Supercell
In the early afternoon of 20 May 2013, a storm initiated to the westsouthwest of Newcastle, Oklahoma. This storm would rapidly intensify into the parent supercell of the tornado that struck the city of Moore, Oklahoma. This article describes what contributions total lightning observations from the Oklahoma Lightning Mapping Array could provide to operational forecasters had these observations been available in realtime. This effort includes a focus on the GOESR pseudogeostationary lightning mapper demonstration product as well as the NASA SPoRT / Meteorological Development Laboratory's total lightning tracking tool. These observations and tools identified several contributions. Two distinct lightning jumps at 1908 and 1928 UTC provided a lead time of 19 minutes ahead of severe hail and 26 minutes ahead of the Moore, Oklahoma tornado's touchdown. These observations provide strong situational awareness to forecasters, as the lightning jumps are related to the rapid strengthening of the storm's updraft and mesocyclone and serve as a precursor to the stretching of the storm vortex ahead severe weather
Lightning activity related to satellite and radar observations of a mesoscale convective system over Texas on 7-8 April 2002.
A multi-sensor study of the leading-line, trailing-stratiform (LLTS) mesoscale convective system (MCS) that developed over Texas in the afternoon of 7 April 2002 is presented. The analysis relies mainly on operationally available data sources such as GOES East satellite imagery, WSR-88D radar data and NLDN cloud-to-ground flash data. In addition, total lightning information in three dimensions from the LDAR II network in the Dallas–Ft. Worth region is used. GOES East satellite imagery revealed several ring-like cloud top structures with a diameter of about 100 km during MCS formation. The Throckmorton tornadic supercell, which had formed just ahead of the developing linear MCS, was characterized by a high CG+ percentage below a V-shaped cloud top overshoot north of the tornado swath. There were indications of the presence of a tilted
electrical dipole in this storm. Also this supercell had low average CG- first stroke currents and flash multiplicities. Interestingly, especially the average CG+ flash multiplicity in the Throckmorton storm showed oscillations with an estimated period of about 15 min.
Later on, in the mature LLTS MCS, the radar versus lightning activity comparison revealed two dominant discharge regions at the back of the convective leading edge and a gentle descent of the upper intracloud lightning region into the trailing stratiform region, apparently coupled to hydrometeor sedimentation. There was evidence for an inverted dipole in the stratiform region of the LLTS MCS, and CG+ flashes from the stratiform region had high first return stroke peak currents
A WRF-Chem flash rate parameterization scheme and LNOx analysis of the 29-30 May 2012 convective event in Oklahoma during DC3
The Deep Convective Clouds and Chemistry (DC3) field campaign in 2012 provided a plethora of aircraft and ground-based observations (e.g., trace gases, lightning and radar) to study deep convective storms, their convective transport of trace gases, and associated lightning occurrence and production of nitrogen oxides (NOx). Based on the measurements taken of the 29-30 May 2012 Oklahoma thunderstorm, an analysis against a Weather Research and Forecasting Chemistry (WRF-Chem) model simulation of the same event at 3-km horizontal resolution was performed. One of the main objectives was to include various flash rate parameterization schemes (FRPSs) in the model and identify which scheme(s) best captured the flash rates observed by the National Lightning Detection Network (NLDN) and Oklahoma Lightning Mapping Array (LMA). The comparison indicates how well the schemes predicted the timing, location, and number of lightning flashes. The FRPSs implemented in the model were based on the simulated thunderstorms physical features, such as maximum vertical velocity, cloud top height, and updraft volume. Adjustment factors were applied to each FRPS to best capture the observed flash trend and a sensitivity study was performed to compare the range in model-simulated lightning-generated nitrogen oxides (LNOx) generated by each FRPS over the storms lifetime. Based on the best FRPS, model-simulated LNOx was compared against aircraft measured NOx. The trace gas analysis, along with the increased detail in the model specification of the vertical distribution of lightning flashes as suggested by the LMA data, provide guidance in determining the scenario of NO production per intracloud and cloud-to-ground flash that best matches the NOx mixing ratios observed by the aircraft