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Abstract

A multi-sensor study of the leading-line, trailing-stratiform (LLTS) mesoscale convective system

(MCS) that developed over Texas in the afternoon of 7 April 2002 is presented. The analysis relies

mainly on operationally available data sources such as GOES East satellite imagery, WSR-88D radar

data and NLDN cloud-to-ground flash data. In addition, total lightning information in three

dimensions from the LDAR II network in the Dallas–Ft. Worth region is used.

GOES East satellite imagery revealed several ring-like cloud top structures with a diameter of

about 100 km during MCS formation. The Throckmorton tornadic supercell, which had formed just

ahead of the developing linear MCS, was characterized by a high CG+ percentage below a V-shaped

cloud top overshoot north of the tornado swath. There were indications of the presence of a tilted
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electrical dipole in this storm. Also this supercell had low average CG� first stroke currents and

flash multiplicities. Interestingly, especially the average CG+ flash multiplicity in the Throckmorton

storm showed oscillations with an estimated period of about 15 min.

Later on, in the mature LLTS MCS, the radar versus lightning activity comparison revealed two

dominant discharge regions at the back of the convective leading edge and a gentle descent of the

upper intracloud lightning region into the trailing stratiform region, apparently coupled to

hydrometeor sedimentation. There was evidence for an inverted dipole in the stratiform region of

the LLTS MCS, and CG+ flashes from the stratiform region had high first return stroke peak currents.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An interesting leading-line, trailing-stratiform (LLTS) mesoscale convective system

(MCS) developed over the Texas panhandle on 7 April 2002 (Massura and Hansing, 2003)

and was very well-observed during parts of its 48-h lifetime. In its late stages, the MCS

also affected the Texas coastline and moved further offshore, where the system eventually

decayed halfway to Florida on 9 April. We first focus on MCS formation including the

Throckmorton supercell storm, which formed near the northern tip of the developing linear

MCS. Then, the quasi-stationary state of MCS maturity is studied. Our study relies on

operationally available total lightning (cloud-to-ground and intracloud), geostationary

satellite, Doppler radar and synoptic data.

Previous research on MCS evolution which presents the background for our

investigation was reviewed by Houze (1993) and, recently, by Fritsch and Forbes

(2001). In particular, we follow the broad MCS definition given by MacGorman and

Morgenstern (1998), which includes linear systems (like squall lines) and is not restricted

to circular-shaped cumulonimbus clusters below the size of a mesoscale convective

complex (MCC, Maddox, 1980):
bA mesoscale convective system is a group of storms which interacts with and

modifies the environment and subsequent storm evolution in such a way that it

produces a long-lived storm system having dimensions much larger than individual

storms.Q
When cloud electrification of MCS-type or supercell storms is considered, literature on

earlier research is even more voluminous. Comprehensive treatments of lightning in severe

storms were given by MacGorman (1993), Houze (1993), MacGorman and Rust (1998)

and Williams (2001). Lightning physics by itself is treated by Saunders (1993),

MacGorman and Rust (1998), Uman (2001) and Rakov and Uman (2003).

From these, the conceptual model of cloud-to-ground (CG) and intracloud (IC) flashes

presented in Fig. 1 has gained widespread acceptance (cf. Williams, 1989; Lang and

Rutledge, 2002; Hamlin et al., 2003): There are usually two dominant charge regions

present within the storms, a negative charge region between �10 and �20 8C, and a

positive charge region higher up, close to the �40 8C temperature level. Aside from this
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Fig. 1. Conceptual model of lightning types, main charge layers (light gray=positive, medium gray=negative)

and their typical in-cloud temperature levels. Note two options for CG+ flashes: (i) inverted dipole, with negative

charge above positive charge; (ii) normal polarity, tilted dipole in strongly sheared environments, unshielding the

upper positive charge region.
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main dipole structure, there may be other, less pronounced charge layers in the

thundercloud. For instance, a smaller positive charge region is often found near the

freezing level, leading to a tripole setup. Fig. 1 depicts these layers within schematic,

cylindrical thunderstorms and shows the possible consequences for CG and IC discharges.

The left- and rightmost sketches show negative CG and IC flashes, respectively, for a

normal polarity dipole storm with a main positive charge center above the negative main

charge center. For the positive CG flash, however, there are two different known

processes. The first of these is the inverted dipole in which the charge layering inside the

cloud is reversed compared to the normal polarity setup. The second alternative is the tilted

dipole, a special case of a normal polarity storm. In a strongly sheared environment that

favors development of supercell storms, the upper positive charge center will be shifted

downshear from the lower, negative charge region. In this way, the negative charge layer

does not shield the positive charge overhead from the ground anymore, so CG+ flashes

can occur (cf. Brook et al., 1982; Curran and Rust, 1992), originating from a much greater

altitude than positive discharges from an inverted polarity dipole would.

Due to a relative lack of three-dimensional lightning observations in mature MCSs,

there are no similar conceptual models of in-cloud lightning structure in the trailing

stratiform region of MCSs. Several balloon studies (e.g., Marshall and Rust, 1993;

Stolzenburg et al., 1994) of electric fields in the stratiform region of MCSs have inferred

multi-layered charge structures there, but few studies have examined in-cloud lightning

behavior. Mazur and Rust (1983) found that significantly more lightning occurred in the

convective as compared to the stratiform region, where long (N20 km) flashes tended to

occur preferentially. More recently, Lyons et al. (2003) examined the vertical structure of

VHF sources associated with 15 sprite-producing CG+ flashes in the stratiform region of

an MCS. The average height of VHF sources associated with sprite-producing CG+

discharges was 4.1 km AGL, close to the melting layer and thus pointing towards melting-

charging mechanisms.
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CG+ flashes from a tilted dipole may provide evidence for presence of a supercell

storm. However, successful verification of an inverted dipole with its necessary

microphysical peculiarities (Saunders et al., 1991; Saunders, 1993) allows to make

judgements on the cloud electrification processes inside the storm. For these reasons, CG+

flashes are a focal point of thunderstorm research. When using total lightning information,

it is possible to discriminate between the two possible dipole types. In addition to several

studies (e.g., Hamlin et al., 2003) in the USA, Dotzek et al. (2001) showed an example of

an inverted dipolar structure in a supercell hailstorm in southern Germany. Much like the

analysis by Carey et al. (2005), the lightning data in the present paper encompasses

National Lightning Detection Network (NLDN) CG flash data indicating time and location

of positive discharges. In the Dallas–Ft. Worth region, a 7-sensor Lightning Detection and

Ranging (LDAR II) network provides the necessary IC lightning data to derive a full suite

of cloud electrical details of storms passing by. We will use these data to test the validity of

the lightning discharge models summarized in Fig. 1.

Geostationary satellites are another useful tool to diagnose and predict severe storm

formation and intensification. Studies like those by Purdom (1976), Adler and Fenn

(1979a,b), Adler et al. (1985), Adler and Mack (1986), Heymsfield and Blackmer (1988),

Schmetz et al. (1997) or the review by Purdom (1993) clearly indicate the different

capabilities that satellites have in storm observation compared to ground-based radar. Not

only do satellites provide a view of the cumulonimbus cloud top structure, but they also

can detect shallow cloud lines atop thunderstorm outflow boundaries, which may serve as

zones for new storm formation, but are not yet visible to radar due to the absence of

precipitation-sized hydrometeors within them. And in addition, as early as in the late

1970s, Turman and Tettelbach (1980) tried to nowcast storms’ tornadic potential by

spaceborne lightning detection.

In the present paper, our analysis focuses on the characteristics of lightning

evolution during the transition phase from isolated supercells to a mature linear MCS

of LLTS type. Similar to the analysis by Zipser and Lutz (1994), we exploit

conventional Doppler radar data only. Other studies have also involved polarimetric

Doppler radar and lightning detection allowing for hydrometeor classification, either

using the S-band (10 cm wavelength, Carey and Rutledge, 1996, 1998; Williams et al.,

1999; Hamlin et al., 2003; MacGorman et al., 2003) or the C-band (kg5 cm, Carey

and Rutledge, 2000; Dotzek et al., 2001; Fehr et al., this volume) in conjunction with

an interferometric total lightning mapper (Defer, 1999; Lang et al., 2000). Moreover,

an early total lightning study of a severe storm using L-band radar intracloud lightning

detection was presented by MacGorman et al. (1989). Yet, even if no IC lightning data

are available, operational national cloud-to-ground lightning detection networks still

allow for analysis of electrical activity and storm evolution (e.g., Kane, 1991; Parker et

al., 2001; Seity et al., 2003). To detect and determine systematic changes of flash

activity and to relate these to satellite and radar observations of thunderstorms can

contribute both to our understanding of lightning formation and indicators of

impending storm severity.

By combining the analyses by Dotzek et al. (2003), McCormick (2003), Carey et al.

(2003b) and the closely related 16 June 2002 LLTS MCS case study by Carey et al.

(2005), our work aims to quantify the location of electrical activity with respect to GOES 8
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satellite-derived cloud top structures and WSR-88D radar data. Section 2 of the paper

gives a brief overview on the data sources used for our study. In Section 3 on MCS

formation, the Throckmorton tornadic supercell and the mature, quasi-stationary LLTS

stage of the MCS are analyzed in detail. The obtained results are discussed in Sections 4

and 5 presents our conclusions.
2. Data description

Lightning activity of the storms from 7 to 8 April was monitored by two observation

systems, NLDN and LDAR II. The two-dimensional NLDN (cf. Cummins et al., 1998;

Orville and Huffines, 2001) collects cloud-to-ground flash data including latitude–

longitude location and time, polarity, first return stroke peak current2 Imax,1 and stroke

multiplicity n. The NLDN data cover the time span from 7 April, 0000 UTC to 10 April,

0000 UTC. Note that, while the NLDN directly maps each return stroke of a CG flash, the

data in our analysis had already undergone some post-processing during which the

recorded strokes were grouped into flashes.

However, the NLDN does not provide a complete picture of lightning activity in

thunderstorms, as usually the majority of lightning discharges occurs as intracloud

flashes (e.g., Boccippio et al., 2001a) of which none or only a very small portion can be

detected by the NLDN. Yet in the Dallas–Ft. Worth region, three-dimensional total

lightning (CG plus IC) data from an LDAR II network (e.g., Demetriades et al.,

2002a,b; Demetriades and Murphy, 2003) operated by Vaisala were available. The

network normally consists of 7 sensors with 20–30 km baselines. Fig. 2 depicts the

locations of the LDAR II sensors in the Dallas–Ft. Worth metro area, as well as the

KFWS Ft. Worth WSR-88D radar site located approximately 44 km to the southwest of

LDAR II central sensor A.

As also discussed in detail by Carey et al. (2005) in their study of the 16 June 2002

LLTS MCS in the same area, LDAR II can normally map flashes in three dimensions

within approximately 150 km of the network center, degrading in performance with

increasing range. However, in the 7–8 April case, the network was somewhat

compromised in performance because the two northern and northeastern sensors B

and C were not operational. As detailed in Appendix A, their loss resulted in decreased

lightning flash detection efficiency from more than 90% (typical value) to 60% within the

ring formed by the network’s six peripheral sensors and from approximately 90% (typical

value) to about 20% at a 120 km range from the network’s central sensor. The location

accuracy did not change greatly from 100 to 200 m near the center of the 5-sensor network

and less than 4 km at distances of about 120 km from the reduced LDAR II network

center. Nevertheless, a set of lightning VHF signals (bsourcesQ) within 150 km range

around Dallas–Ft. Worth International Airport are available for our study from 7 April,
2 Note that commonly the first return stroke is assumed to have the peak current of a flash. However, this

assumption is not fulfilled for all flashes. We therefore chose to use the more appropriate term bfirst return stroke

peak current, Imax,1Q here. See also Lyons et al. (1998).



Fig. 2. Dallas–Ft. Worth area map with LDAR II sensors (A, central sensor; B to G clockwise from north) and

KFWS Doppler radar locations. Sensors B and C were those not operational on 7–8 April 2002.
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0015 UTC to 8 April, 0600 UTC. Note that the Throckmorton storms during MCS

formation were beyond the range of the LDAR II network, so total lightning data is only

available for the mature LLTS stage of the MCS.

GOES 8 (GOES East) geostationary satellite data have also been recorded and are

used to relate lightning activity to cloud top features. The available GOES 8 channel 1

to channel 5 data with 4 km horizontal resolution cover the period from 7 April, 1200

UTC to 9 April, 1200 UTC. Aside from the visible spectrum (VIS) channel 1, we

mainly focus on the analysis of longwave infrared (IR) channel 4, which monitors the

spectral band from 10.2 to 11.2 Am. In this band, the GOES 8 imager only receives

emitted IR radiation, making it independent of the amount of incident solar radiation. In

addition, channel 4 data allow observations of structures both in the boundary layer and

at very high altitude. This makes it attractive for analyses of deep moist convection,

especially if brightness temperature TB grayscale values from medium and high

tropospheric levels are further enhanced. We applied the standard MB enhancement table

(cf. Reynolds, 1980; Maddox, 1981; McCann, 1983) for thermal IR imagery which

redefines grayscale values mainly for brightness temperatures less than �32 8C: medium

gray �32 to �41 8C, light gray �41 to �52 8C, dark gray �52 to �58 8C, black �58

to �62 8C and repeat gray to white shading below �62 8C. It is most widely used in
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the meteorological community because of the way cold cloud tops (TBb� 62 8C) are

highlighted, without losing details of boundary layer structures.

For our analysis, we also rely on S-band (10 cm wavelength) Doppler radar data from

two radar facilities. The Throckmorton tornadic supercell storm was well-covered by base-

level reflectivity and Doppler velocity scans from the Dyess Air Force Base radar (KDYX)

west of Abilene in northern Texas (Massura and Hansing, 2003). The WSR-88D radar

located in Ft. Worth (KFWS, cf. Fig. 2) recorded the mature LLTS stage of the MCS in the

Dallas–Ft. Worth area later in the day. Both radars provided useful additional information

on the storms’ internal structure in order to find interrelationships between radar

signatures, satellite-derived cloud tops, NLDN and LDAR II data (for the LLTS MCS

only).

Lastly, we use the Weather Services International (WSI) USA national composite (2 km

resolution) of WSR-88D reflectivity from base-level scans over Texas and surrounding

areas in order to observe the structure and evolution of the 7–8 April MCS throughout its

life cycle.
3. Results

The thunderstorms which later formed the 7 April MCS developed over west Texas, as

a shortwave trough was advancing out of the southwest USA. Atmospheric conditions

were favorable for severe thunderstorm formation. Fig. 3a at 1800 UTC shows a warm

front over north Texas and a dryline over extreme west Texas. In addition, numerous

outflow boundaries over northwest and north–central Texas from overnight convection

were present during the late morning and early afternoon (Massura and Hansing, 2003).

These features, combined with surface temperatures in the range 23–26 8C, considerable
instability indicated by CAPE values from 1500 to 2000 J kg�1 with sufficient deep layer

shear (cf. the three pre-MCS proximity atmospheric soundings from Midland, Del Rio and

Ft. Worth in Fig. 4a–c) enabled rapid thunderstorm development after 1700 UTC in the left

exit region of a 300 hPa jet streak (cf. Hane et al., 2002). The first developing storms were

isolated supercells (Fig. 5a), but after 1800 UTC, these quickly organized along a line (Fig.

5b–c) and later transformed into a large linear MCS extending from south of San Antonio

to north of Dallas, moving east–southeasterly (Fig. 5d–i).

GOES 8 channel 4 grayscale MB-enhanced satellite images were computed and

investigated for all available satellite scans. Of these, the ones in Fig. 6 were chosen to

document the evolution from individual cells on a surface boundary (1715 UTC, labels 1

and 2 in Fig. 6a, cf. Massura and Hansing, 2003) to a line of severe thunderstorms (2025

UTC, Fig. 6b). The o-symbols indicate ring-like elevated cloud top structures of 50 to 100

km in diameter within the forming linear MCS. Near the northern tip of the squall line

MCS, the Throckmorton storm’s rapidly overshooting top takes on a V-shape 8 min before

the tornado (cf. McCann, 1983; Adler and Mack, 1986; Heymsfield and Blackmer, 1988)

and is marked by a V-symbol in Fig. 6b, which coincides with many NLDN CG strike

locations.

Interestingly, there is another strong storm system (a more circular MCS itself ) in Fig.

6b, which had developed in the Dallas–Ft. Worth region more rapidly than the cells along



Fig. 3. Surface analysis charts for Texas and surrounding states (Gulf of Mexico shaded in light gray). (a) 7 April,

1800 UTC, (b) 7 April, 2100 UTC, (c) 8 April, 0000 UTC. Note progression of dryline and warm front, as well as

the mesohigh behind the instability line in (c) caused by the LLTS MCS.
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Fig. 4. Atmospheric proximity soundings within the pre-MCS air mass. (a) 7 April, 1200 UTC Midland (MAF),

(b) 7 April, 1800 UTC Del Rio (DRT), (c) 8 April, 0000 UTC Ft. Worth (FWD), showing the strongest low-level

wind shear and a cold-point tropopause at �65 8C. Sounding locations are depicted in Fig. 6a. Images courtesy

University of Wyoming.

N. Dotzek et al. / Atmospheric Research 76 (2005) 127–166 135



Fig. 5. WSI mosaics of WSR-88D 0.58 PPI base-level reflectivity scans over Texas and surrounding areas from 7

April, 1730 UTC to 8 April, 0800 UTC. (a) 1730 UTC, (b) 1815 UTC, (c) 1930 UTC, (d) 2200 UTC, (e) 0000

UTC, (f) 0200 UTC, (g) 0400 UTC, (h) 0600 UTC, (i) 0800 UTC. Note the change in coverage area from panels

(f) to (g). In panels (a)–(c), a rectangle is drawn around the developing MCS. In panel (e), a star indicates the

approximate location of the center of the LDAR II network. The key to radar reflectivity shading in dBZ for all

panels is presented in a bar on the left of (e).
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the boundary layer line in west Texas. CG lightning activity in this MCS is almost

exclusively confined to the regions of highest cloud tops at that time. The GOES 8 channel

4 imagery reveals that this storm’s overshooting cloud top already reached to about the

�70 8C isotherm. These brightness temperatures are several Kelvin below the cold-point

tropopause derived from the 8 April, 0000 UTC Ft. Worth sounding in Fig. 4c. Such a

negative offset in TB has frequently been observed (e.g., Reynolds, 1980; Heymsfield et

al., 1983a,b) and is likely caused by transport of air masses within the main updraft cores

of the storms (Adler and Fenn, 1979a; Danielsen, 1982). This air arrives at the tropopause

level cooler than the ambient air. The satellite-observed brightness temperature is then an

average of the temperature in the cold overshooting cloud turrets and the air directly

above. And besides, changes in IR emissivity caused by variations in ice particle size



Fig. 6. GOES 8 channel 4 MB-enhanced images from 7 April. (a) 1715 UTC with sounding locations from Fig. 4

and (b) 2025 UTC. NLDN flash overlay (+=CG+, 5=CG�) 10 min before to 5 min after image time. Labels 1

and 2 in (a) indicate convective and CG lightning initiation along the boundary layer line. In (b), the o-symbols

point to larger-scale ring-like anvil top structures and the V-symbol gives the V-shaped overshoot of the

Throckmorton cell, cf. Fig. 5a–c.
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spectra can also lead to altered values of TB (Adler and Fenn, 1979b). For this reason,

estimating cloud top heights from brightness temperature measurements alone is not

feasible. Note that this circular MCS later moved north–northeastward into Oklahoma,
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leaving an outflow boundary to the south and east of Dallas–Ft. Worth, which triggered a

line of thunderstorms at about 0030 UTC on 8 April.

In general, the NLDN data showed a strong increase in CG lightning activity during

squall line evolution towards MCS maturity: For the whole region of Fig. 6a,b, the number

of CG flashes per hour was about 250 between 1900 and 2100 UTC, 380 h�1 between

2100 and 2200 UTC, and then remained between 550 and 685 h�1 for 1-h intervals

between 7 April, 2200 UTC and 0100 UTC on 8 April. This provides evidence that after

2200 UTC, MCS size and intensity had apparently reached a quasi-stationary peak level,

while after 0100 UTC, lightning activity began to drop below 200 h�1 again.

3.1. Throckmorton supercell

As shown in Fig. 3a,b, this squall line MCS had developed to the east of the dryline. It

was accompanied mainly by damaging straight-line winds and hail, sometimes up to 4.5

cm in diameter. Several tornadoes were reported as well, most notably the ones near

Throckmorton from 2033 to 2050 UTC.3 All other tornadoes occurred much further to the

south, between 29.1 and 30.68N latitude.

The storm that produced the Throckmorton tornado during the early stages of LLTS

MCS formation developed as an isolated thunderstorm around 1920 UTC, ahead of the

developing squall line. The storm quickly strengthened and, by 2000 UTC, it began to

cross a pre-existing outflow boundary already notable both in GOES 8 VIS imagery

and KDYX radar reflectivity data before 1900 UTC. As noted by Rasmussen et al.

(2000) and Gilmore and Wicker (2002), this may have played a role for later

significant tornado formation and high CG+ flash rates. As early as from 1917 to 1945

UTC, the cell produced hail of at least 2.5 cm in diameter. At 2033 UTC, the first

condensation funnel of a brief F0 tornado formed and reached the surface at 33.188N,
99.358W. At 2034 UTC, the main F2 tornado formed at 33.188N, 99.338W, about 14

km west of the city of Thockmorton. The tornado continued to move east–northeast

and developed a large funnel. It lasted at least 16 min, from 2034 to 2050 UTC, and

its path ended after 11.3 km at 33.238N, 99.258W. Another large funnel was present to

the north of the old one, but it only developed into another brief F0 tornado at the end

of the F2 tornado track.

To complement the satellite-viewed boundary analysis by Massura and Hansing (2003)

and the reports by ground observers,4 Figs. 7–11 focus on GOES 8, KDYX radar and

NLDN data for the region and time period of the tornado. Note that total lightning data are

not available here, as the Throckmorton storm was out of range (240 km distance) of the

LDAR II network, even without loss of two sensors. Fig. 7 documents the cloud top

evolution of the Throckmorton storm complex from 23 min to 8 min before the tornadoes.
3 Storm reports are available from NOAA’s National Climatic Data Center, NCDC and the Storm Prediction

Center, SPC.
4 Jonathan Garner, Brian Thalken and Chuck Doswell provided detailed 7 April 2002 storm chase reports, e.g.

www.garnerchase.net/throckmorton.html. Interestingly, the latter account also indicates that the rear-flank

downdraft of the Throckmorton storm was warm, probably even slightly warmer than the storm’s inflow air,

supportive of findings by Markowski (2002).

http:www.garnerchase.net/throckmorton.html
http:www.garnerchase.net/throckmorton.html


Fig. 7. As Fig. 6, but showing a close-up of the Throckmorton storm evolution before tornado genesis (2033

UTC) for (a) 2010, (b) 2015 and (c) 2025 UTC with NLDN CG flash activity (+=CG+, 5=CG�) from 5 min

before to 5 min after image time.
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Fig. 8. KDYX 0.58 PPI base-level reflectivity scans during and after Throckmorton tornadoes. The + marks the

location of the city of Throckmorton (cf. Fig. 11), with county limits and part of the Texas–Oklahoma border as

an overlay. Throckmorton county size is about 54 km west–east and 60 km south–north. The depicted region is

similar to Fig. 9 and includes the full stratiform anvil part of the storms (lighter gray shades below 30 dBZ) for

better comparison to the GOES 8 satellite imagery in Fig. 9.
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Figs. 8 and 9 cover the tornadoes’ lifetimes, from 1 min before tornado genesis to 18 min

after its end (Fig. 8) and to 5 min before its end (Fig. 9), respectively.

Fig. 7a,b indicate that most flashes occur in the southeastern sector of the anvil and

most CG+ are found below the coldest cloud top regions (dark shading). What is also

visible here again and in Fig. 7c is the ring-like region of colder and possibly higher cloud

tops. This larger-scale feature (100 km diameter) which was seen already several times in

Fig. 6b is caused by several individual storms beneath the large anvil, at least in the

Throckmorton region. The KDYX Dyess Air Force Base radar data at this time (and still

visible later at 2032 in Fig. 8a) indicate that a number of cells creates the northern half of

the anvil bringQ. In the southeastern sector, there is one other electrically active cell west–

northwest of the Throckmorton storm. Other cells lie further west. So in this case, the ring-

like cloud tops are a result of the spatial alignment of the initial convective cells.

At 2025 UTC, Fig. 7c still shows the majority of CG+ lightning flashes under the V-

shaped cumulonimbus overshoot (cf. Heymsfield and Blackmer, 1988), which has grown

in size compared to 2015 UTC in Fig. 7b. Now, 8 min before tornado genesis, there are

two regions from which higher CG� activity extends southward from the highest cloud

tops: (1) the Throckmorton area and (2) further west, near the southernmost tip of the V-

shaped overshoot where Fig. 8a indicates another storm.

Focusing now on the tornadic time period of the Throckmorton supercell, Figs. 8 and 9

give base-level radar reflectivity and IR satellite data, respectively, within almost the same



Fig. 9. As Fig. 7, but for (a) 2032, (b) 2040 and (c) 2045 UTC during tornado lifetime (2033 to 2050 UTC). T

points to tornado locations based on SPC tornado reports.
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Fig. 10. CG flash analysis in Throckmorton area on 7 April from 1900 to 230 UTC, containing 1711 flashes (534

CG+). Panels (a)–(c) give area-averaged time series (5 min running means). Tornado period is marked by dashed

vertical lines. (a) First stroke currents Imax,1 (black) and CG+ percentage (gray); (b) stroke multiplicities n

(black=CG�, gray=CG+); (c) total CG flash rate f (black), total stroke rate (upper light gray line), CG+ flash

rate (lower gray line). Panel (d) is a planview centered at first F0 tornado report: o=CG�, 5=CG+. F2 tornado

track start and end are marked by dashed lines. Grayscale of symbols shows storm propagation: before 2000

white, 2000 to 2100 UTC light gray, 2100 to 2200 UTC white, after 2200 UTC dark gray. Tornadic time (2033 to

2050 UTC) flashes highlighted in black.
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domain. In this way, size and location of the stratiform and anvil regions of the

thunderstorms as seen by radar and geostationary satellite can be compared.

Fig. 8a–c show a clear hook echo in the radar reflectivity core of the cell as it entered

Throckmorton county (with the + indicating the city of Throckmorton). Fig. 8c displays

the hook echo closest to the conceptual model of a classic supercell storm. Fig. 8d–f

document the decaying stage of the tornadoes’ lifecycles and the gradual transition to an

outflow-dominated storm complex. In Fig. 8d, at 2048 UTC, 2 min before tornado

disappearance, the hook echo signature has weakened considerably. Simultaneously, the

storms further west have come a lot closer and begin to catch up with the Throckmorton

supercell. Here, and already in Fig. 8c, an outflow boundary is visible at the southern tip of

these western cells. Fig. 8e shows the beginning cell merger with the Throckmorton storm

and also a re-shaping of the hook echo. At 2053 UTC, 3 min after tornado end, its
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Fig. 11. As Fig. 10, but zooming in on place and time of the Throckmorton tornadoes. In panel (d), 189 flashes

(35 CG+) are plotted, which occurred from 2025 to 2100 UTC within 30 km of the first F0 and the F2 tornado

track (gray, bounded by dashed lines). During tornadic time (2033 to 2050 UTC), 80 flashes were recorded,

including 14 CG+. City of Throckmorton is marked by the bold + (cf. Fig. 8).
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curvature has become reversed, and KDYX radar reflectivity has increased. This is no

longer a tornadic hook echo (Markowski, 2002), but an inverted or J-hook structure,

indicating that divergent rear-flank downdraft winds have overtaken the supercell’s right

flank and likely diluted the vortex near the ground.

The rear-flank downdraft of the Throckmorton supercell now pushes forward ahead of

the storm. Fig. 8f from 18 min after the last tornado documents the complete cell merger

and the formation of two significant arc-shaped outflow boundaries: The one east of

Throckmorton caused by the former rear-flank downdraft, and the one still west of the city

most likely connected to the cells which had caught up and merged with the supercell from

the west. The rapid progression of the cells west of the Throckmorton storm led to a

shrinking of the weak echo region between the cells—and likely corresponds to the

disappearance of the ring-like cloud top structure of the whole system visible in the GOES

8 images of Fig. 9.

Comparing the KDYX radar observations to satellite imagery and CG flashes, Fig. 9a at

2032 UTC (1 min before tornado formation) shows significant CG+ activity north of the

tornado and still the two southern tips of concentrated CG-flashes identified in Fig. 7c (cf.
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Keighton et al., 1991). Simultaneously, the ring-like cloud top structure starts to vanish

from the northwest. The T-symbol indicates the location of the first Throckmorton tornado

as it formed at 2033 UTC. Apparently, the tornado vortex and the coldest cloud tops show

considerable spatial separation.

Moreover, the high areal density of CG� at the southern flank of the Throckmorton cell

seems to wind or spiral around the location of the tornado. That suggests a preference for

CG� discharges from the hook echo region of the supercellular storm. Recall that the

2032 UTC, KDYX base-level radar reflectivity in Fig. 8a indeed indicated a hook echo

structure. But due to the large distance of 240 km from Throckmorton to the Dallas–Ft.

Worth LDAR II network, no VHF total lightning data is available to perform an analysis

like, for instance, Krehbiel et al. (2000) and Hamlin et al. (2003) did in order to investigate

if the main updraft region in the center of the hook is also void of IC lightning. As will

become evident from the CG flash analysis below, at least a portion of the tornado swath

below the hook echo was free of nearby CG strikes, in accordance with findings by

MacGorman (1993).

During the later stages of the tornado, Fig. 9b,c show that lightning activity near the

highest cloud tops more and more spreads into three different centers: one region to

the north, the former tip of the V-shaped region and the tornadic storm. In Fig. 9c, we

can see that near the tornado, mainly CG� flashes occur, whereas CG+ discharges are

still more confined to the left, northern flank of the storm. Also note the further

decrease in cloud top brightness temperature for the Throckmorton supercell, which

might be indicative of a strengthening updraft and a new overshooting cumulonimbus

turret.

By this time, 2045 UTC, also the hook echo in Fig. 8c was most well-defined. From

these observations, one might argue that the tornado was now probably in its most intense

phase, caused by vortex stretching due to the vigorous updraft within the mesocyclone. Yet

as the tornado only passed over open country with few objects to be damaged, no clear

evidence from a tornado damage survey is available to verify this. The ring-like structure

at the cloud top has also broken up completely, confirming the radar observation that the

cells further west have caught up with the leading ones in the process of squall line

formation (cf. MacGorman and Nielsen, 1991). The surface analysis at 2100 UTC in Fig.

3b also shows how both the dryline and the warm front have advanced during this phase of

MCS formation while in eastern Texas, strong inflow towards the developing squall line

still prevails.

Fig. 10 focuses on solely NLDN CG flash activity in the greater Throckmorton area

between 1900 and 2300 UTC, where 1711 flashes occurred of which 534 (i.e., 31%) were

of positive polarity. Fig. 10a–c give area-averaged time series (5 min running means of

NLDN data with 1 min resolution). Tornado period is marked by the dashed vertical lines.

The following can be noted from the figure: (1) CG� flash multiplicity n is generally low,

showing values of only n =1.1 to 1.3, so average flash and stroke rates do not differ much.

(2) Remarkable are the higher n-values for the CG+ flashes. In general, the contrary is

more likely to be true. (3) The percentage of CG+ flashes was quite high, usually varying

between 25% and 50%. The lowest percentage occurred near the end of the tornado,

simultaneously with a local maximum of average CG+ first stroke current. Another local

peak in Imax,1 of CG+ was detected during the first half of the tornado lifetime. Total CG
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flash rate dropped to a minimum after half the tornado lifetime. (4) Peak CG+ currents

were at a local minimum at tornado genesis. Peak CG� currents were rather low and

ranged between �10 and �20 kA with little temporal variation.

In Fig. 10a,c, there appears to be an interesting trend of generally decreasing CG+

percentage mainly tied to increasing CG� (and not declining CG+) flash rate, which

begins about 30 to 40 min prior to tornado genesis and continues through the end of the

three reported tornadoes. The CG+ percentage continues to go up for an hour after the end

of the last tornado. The total CG flash rate also seems to increase after the tornadoes and

there is a relative minimum in the total CG flash rate during the F2 tornado.

Interestingly, mainly for the CG+ but also for the CG� flash multiplicities in Fig. 10b,

there is a quite pronounced periodicity in the n-values. A rough estimate of the repetition

time is 15 min over the whole time period. From this time series alone, it remains unclear

if this reflects either a cloud dynamical or microphysical cycle relevant for cloud

electrification, a statistical sampling effect or if it is purely coincidental. Some arguments

supporting cloud microphysical reasons and a special NLDN stroke data reanalysis for this

region will be presented in the discussion.

From the planview in Fig. 10d, it is again seen that the majority of CG+ discharges in

the east–northeastward propagating storms before 2200 UTC occurs to the north of the

tornado. The Ft. Worth sounding from 0000 UTC on 8 April in Fig. 4c indicates

southwesterly winds at mid to upper-tropospheric levels, so the northward shift of CG+

activity may be due to discharges from the sheared anvil region, giving evidence for a

tilted dipole within the cumulonimbus core, as illustrated in Fig. 1.

Fig. 11 is a close-up in space and time on a smaller region (approximately the size of

Throckmorton county shown in Fig. 8) around the three observed tornadoes between 2000

and 2100 UTC. Panels (a)–(d) have the same meaning as in Fig. 10. The origin in Fig. 11d

is again given by the first F0 tornado location. The damage swath of the F2 tornado is

plotted as a bold gray line, with its start and end points bounded by the dashed gray lines.

Recall that at the end of the F2 tornado path, another brief F0 tornado occurred. The city of

Throckmorton is marked by the large +-symbol (cf. Fig 8). Within this frame of reference,

189 CG discharges occurred, among which 35 were positive flashes (i.e.19%). During the

17-min tornadic period, 80 CG flashes occurred: 14 were CG+ (18%) and 66 were of

negative polarity. All these lightning strikes occurred within 30 km of the three tornado

tracks. This criterion was chosen such that only flashes from the Throckmorton supercell

were recorded.

Fig. 11d reveals the N–S spatial separation of CG+ and CG� flashes: Only three

positive ground strikes occurred southward of the tornado track’s end point, all other CG+

were recorded 5 to 28 km north of the tornadoes. The radar images in Fig. 8 had shown

that this northward region contains the main precipitation core of the hook echo, so these

positive CG� strikes apparently did not develop from a true stratiform region (with Z less

than 30 dBZ) of the storm. Instead, the observed downshear displacement of the CG+

flashes from the storm’s main updraft region seems to confirm the presence of a tilted

dipole in the supercell according to the schematic in Fig. 1. As Fig. 11a shows, the CG+

flashes nevertheless had rather large first return stroke peak currents with a maximum of

about 90 kA 5 min before the end of the F2 tornado. At the same time (2045 UTC), Fig. 9c

had revealed a new, very cold cumulonimbus turret, and the hook echo in Fig. 8 was most
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clearly defined. So the peak in CG+ return stroke current may be coupled to this

strengthening of the storm’s updraft.

Fig. 11b shows a very low multiplicity of the CG� strikes and an interesting behavior

of the CG+ flashes: CG+ multiplicity only differs from n =1 shortly before tornado genesis

and few minutes before the end of the tornadic phase. Average multiplicity of the CG+

flashes at the end of the F2 tornado is rather high with n-values of about 1.4, similar to the

peaks already seen in Fig. 10. Another feature of Fig. 10c is reproduced in Fig. 11c: The

total CG flash rate shows a minimum at 2040 UTC, near half the tornadoes’ lifetime.

3.2. Mature stage of the MCS

During the remaining hours of 7 April, the squall line merged with the remnants of a

precipitating system in southeast Oklahoma and the earlier Dallas–Ft. Worth circular MCS

and evolved into an east–southeastward-moving linear system with leading-line, trailing-

stratiform characteristics (Fig. 5e–i). The now mature LLTS MCS also was an effective

rain producer. In the late afternoon and evening hours (roughly 2330 to 0100 UTC), heavy

precipitation led to flash flooding in the Dallas–Ft. Worth area. Rainfall accumulation was

81 mm at Dallas–Ft. Worth international airport, surpassing the record mark of 78.5 mm in

24 h from the year 1900, and parts of north Texas received up to 127 mm precipitation.

Figs. 3c and 4c show the surface analysis and the Ft. Worth sounding at 0000 UTC on 8

April. As the instability line in Fig. 3c shows, the Dallas–Ft. Worth metroplex was still

slightly ahead of the advancing LLTS MCS in the air mass with south-easterly inflow

towards the storms. The dryline remained far behind the MCS over the Texas panhandle.

Note the mesoscale high pressure area just behind the instability line, about halfway

between Throckmorton and Dallas–Ft. Worth. Mesohighs as this one are caused by

mesoscale descent at the rear flank of squall lines and may play a role in creating a

convectively bpassiveQ zone between the leading line and the trailing stratiform region of

the MCS.

At this stage, the storms in this area were accompanied by frequent and horizontally

extensive IC lightning activity, noted by ground-based observers and confirmed by the

LDAR II data. Also, the CG flashes now started to concentrate in a remarkably sharp

convective leading edge, visible in the NLDN flash overlay of Fig. 12 at 0115 (a) and 0202

UTC (b).

Fig. 12a documents some cloud-electrical variations along the young LLTS MCS. In

the southern part of the line, there appears to be the highest density of CG strikes and the

strongest focusing of lightning activity along a narrow line almost centered within the

broad high cloud shield. Furthermore, positive flashes are either close behind or far ahead

of the MCS. Thus, in southern Texas, the MCS shows more characteristics of a symmetric

MCS. Northward of 328N, these characteristics change towards the LLTS MCS, with few

CG� flashes ahead of the line and many CG+ discharges far behind the line. The cold

cloud tops in this area (Fig. 12a,b) and the horizontal radar reflectivity structure (Fig. 5e,f)

also reflect the LLTS geometry from well-known conceptual models (e.g., Houze, 1993).

Nevertheless, there is still considerable heterogeneity in this northern section of the squall

line. Near the Texas–Oklahoma border, the lightning locations indicate several parallel

smaller-scale convective line segments in the main leading convective zone. This



Fig. 12. As Fig. 10, but for 8 April, 0115 (a) and 0202 UTC (b), within the time frame of MCS passage through

KFWS radar range (cf. Figs. 5f, 13 and 14).
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spreading into smaller lines becomes more pronounced in southern Oklahoma where the

MCS merges with the old stratiform precipitating system that had covered Oklahoma for

most of the day on 7 April.

Note the coldest cloud tops over eastern Oklahoma at the Oklahoma–Arkansas border:

Here are the remnants of the circular MCS that had formed in the Dallas–Ft. Worth region

simultaneously with the Throckmorton storms, cf. Fig. 6b. There is a line of high cloud

tops and CG lightning activity spreading south–southwestward from the Oklahoma–

Arkansas border into eastern Texas ahead of the LLTS MCS. As derived from the GOES

East imagery, it was formed by convective initiation along two outflow boundaries: The

one created by the circular Dallas–Ft. Worth MCS on its way to Oklahoma, and another,

preexisting one south of Dallas–Ft. Worth, which is visible by moderately high clouds and

weak lightning activity in Fig. 6.
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About 50 min later, Figs. 5f and 12b at 0202 UTC show that the squall line features

have become more distinct and the system is now more homogeneous. The southern part

of the line still has the highest CG flash density and the shape of a symmetric MCS. In the

northern, LLTS part of the MCS, the smaller-scale convective lines have merged to a large

degree, so there is now one main leading line with a large trailing stratiform part

containing many positive CG flashes from 328N into southern Oklahoma. The separate

convective line over eastern Texas is still present and has intensified as well. Its distance to

the main LLTS MCS has decreased and, at a latitude of 338N, there appears to be a CG

lightning bbridgeQ connecting the two lines.

Note that the coldest and likely highest cloud tops occur with this precursory

convective line in eastern Texas, way up to northwest Arkansas where the remnants of the

old Dallas–Ft. Worth circular MCS are. Another region of cold cloud tops is the

southernmost tip of the main MCS.

We now focus on the Dallas–Ft. Worth region, where total lightning and radar data can

be related to the NLDN and GOES 8 observations. The total (i.e., not segregated into

convective or stratiform regions) LDAR II source number maximum at about 0045 UTC

and its subsequent decrease preceded the total CG flash rate maximum and subsequent

decline by about 30 min in this case (McCormick, 2003). Since initial lightning flashes

within convection are IC discharges (Krehbiel, 1986), it is not surprising that these

temporal trends became evident. A constant altitude plan position indicator (CAPPI) of

KFWS radar reflectivity at 2.0 km AGL overlaid with 5-min NLDN-detected CG flash

data for the LLTS MCS at 0119 UTC on 8 April is shown in Fig. 13a. Note that the image

time is almost the same as for Fig. 12a. Most of the CG lightning flashes occur within the

convective region, which is dominated by CG� flashes (e.g., Holle et al., 1994). Also

apparent is the higher percentage of CG+ flashes in the stratiform region as compared to

the convective part (cf. Nielsen et al., 1994).
ba

Fig. 13. KFWS 2.0 km AGL reflectivity CAPPI at 0119 UTC on 8 April. The radar is located in the origin. (a)

NLDN 5 min CG flash overlay centered at radar volume time, +=CG+, 5=CG�. LDAR II sensors are shown as

4-symbols. (b) LDAR II 5 min centered VHF signal overlay (30570 sources from 764 classified flashes).
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The CG+ first stroke peak current in the stratiform region of tropical and mid-latitude

MCSs was studied by Petersen and Rutledge (1992). They found a dominance of high

(low) current CG+ flashes in the stratiform (convective) region of the storms. Lyons et al.

(1998) discuss this and the results by Stolzenburg et al. (1994) in the context of in situ

charging processes in the stratiform region of MCSs. For the early hours of 8 April 2002,

when the MCS passed the Dallas–Ft. Worth area, McCormick (2003) was able to confirm

these previous findings.

From 0000 to 0400 UTC, the 5-min average positive and negative CG first stroke

currents were 35.0 kA and �20.7 kA, respectively. Peak positive current increased with

the development of the stratiform region within the KFWS radar range around 0100 UTC.

After the convective region had propagated beyond the radar range, another increase in

positive peak current was evident at the end of the period when only the stratiform region

was within view. Performing a radar-based segregation of convective and stratiform

regions revealed that the 5-min average peak positive current in the stratiform region (43.0

kA) was over two times larger than the average peak positive current in the convective

region (20.2 kA). The 5-min average peak negative current in the stratiform region (�22.3

kA), however, was only slightly larger than the average negative current in the convective

region (�20.2 kA).

Since the transition zone between the convective and stratiform regions likely lacks

upward motions,5 the non-inductive charging mechanism is inefficient, and little or no CG

lightning flashes are produced in this region. These trends are consistent throughout the

period (0000 to 0400 UTC) during which the 7–8 April 2002 MCS with its LLTS part was

within range of KFWS radar.

A sample of 5-min LDAR II VHF source locations relative to the 2.0 km AGL

reflectivity CAPPI of the MCS at 0119 UTC is depicted in Fig. 13b. It is evident that

increased numbers of VHF sources are located along the back half of the leading

convective line where the mature-to-dissipating convective cells lay, and the leading edge

of the stratiform region, since a sufficient amount of time is needed to build up enough

electric charge within a convective cell to produce lightning flashes (Krehbiel, 1986). The

leading edge of the stratiform region may be associated with increased LDAR II VHF

source numbers as a result of either charge advection from the convective region (e.g.,

Rutledge and MacGorman, 1988) or an in situ charge generation mechanism (e.g.,

Engholm et al., 1990; Rutledge et al., 1990; Rutledge and Petersen, 1994; Zajac and

Rutledge, 2001).

Line-normal vertical cross-sections of average radar reflectivity factor Z and the total

LDAR II VHF source density over 5-min intervals within the 200�200�20 km3 KFWS

radar volume have also been computed for the MCS on 8 April (Fig. 14). For the

averaging, a 200 km long part of the squall line was used. Fig. 12 had shown evidence that

the MCS indeed showed the LLTS characteristics over a distance of F100 km north and

south of Dallas–Ft. Worth. As the MCS was apparently in a quasi-stationary or only

weakly intensifying state at this time, it appears justified to give a composite of four

individual snapshots (0039, 0104, 0119 and 0203 UTC, cf. Fig. 12) in Fig. 14 to get a
5 Mass continuity requires subsidence next to the convective core of the MCS. As it is of LLTS type, this must

be more pronounced on the rear side and can be related to the presence of a surface mesohigh as seen in Fig. 3c.
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Fig. 14. Composite of four individual vertical line-normal cross sections of radar reflectivity factor and LDAR II

source density nVHF through the MCS as it passed the Dallas–Ft. Worth area at 0039, 0104, 0119 and 0203 UTC

on 8 April. Isopleths: line-parallel 200 km spatial average of KFWS radar reflectivity factor. Grayscale shading:

same spatial average for 5 min of LDAR II VHF source density given in km�3 h�1. Origin of storm-relative

horizontal coordinate was defined by ground location of average rear flank 40 dBZ contour.
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more complete vision of radar reflectivity and total lightning activity. This provides the

most reliable view on spatial VHF source distribution in the MCS despite the loss of

LDAR II sensors B and C, which resulted in decreased detection efficiency and likely

caused some of the IC lightning evolution between the individual times.

At early times (0039 UTC), the LDAR II network did not observe flashes in the

stratiform region above the melting layer. They were likely there, since the stratiform

system was fairly steady the whole time and also because there were NLDN-detected CG

discharges in the same region. At later times (0203 UTC), the reduced LDAR II network

did not observe flashes in the convective leading line very well, particularly at low levels.

At this time, the area beneath the melting layer was below the LDAR II field of view. Yet,

there is evidence that IC flashes were still there, based on the presence of CG lightning

activity revealed by the NLDN data. The times in between at 0104 and 0119 UTC show

the least reduction in LDAR II detection performance.

Assuming stationarity of LLTS MCS kinematics, the procedure of giving a composite

image of vertical distribution of LDAR II VHF sources versus KFWS radar reflectivity

minimizes effects of reduced LDAR II detection efficiency and likely best documents

MCS structure in the line-normal vertical frame of reference in Fig. 14. Within the

convective line, there are two dominant electrically active VHF source layers apparent

from this image: Consistent with the conceptual model of a tripole (Williams, 1989) in the

leftmost schematic of Fig. 1, the lower dominant source region is centered at 4.5 km AGL

(approximately �5 8C, derived from the 8 April, 0000 UTC Ft. Worth environmental

sounding in Fig. 4c), a local minimum is centered at about 6.5 km AGL (�20 8C), and the

upper dominant VHF source region is centered at 10 km AGL (�45 8C). This upper

dominant source region descends from the convective line into the trailing stratiform

region, suggesting that the charge advection mechanism may take place here. The

downward-sloping maximum in VHF sources behind the convective line was also shown
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by McCormick (2003) and Demetriades et al. (2004). The source region terminates at

approximately 3.5 to 7 km AGL (roughly 0 to �25 8C) just above the melting layer, being

visible by the local reflectivity maximum or bbright bandQ (i.e., 2.5–3 km AGL or roughly

consistent with the height of the 0 8C wet bulb temperature at 3.2 km AGL). Note that the

melting layer signature (highlighted by a dashed line in Fig. 14) is significantly smeared in

the vertical by the 18�1 km resolution of the KFWS WSR-88D data. Taking into account

the MCS propagation of 60 km�1, the observed rate of descent of about 1.4 m s�1 in the

slanted region is consistent with typical hydrometeor fallspeeds (e.g., for snow) in

stratiform parts of thunderclouds. Another large VHF source concentration also exists

ahead of the convective leading line within convective cells in the precursory line which

was already identified in Fig. 12 to bbridgeQ into the LLTS MCS at the Dallas–Ft. Worth

latitude of 338N.
The slanting lightning region terminates above the melting layer in the stratiform

region, where horizontally layered VHF lightning sources occuring from 3.5 to 6.5 km

AGL (about 0 to �20 8C) are clearly evident. The horizontally layered VHF lightning

sources at these heights and temperatures are consistent with past in situ E-field

measurements in the stratiform region, which inferred the presence of multiple,

extensive charge layers above the melting layer (e.g., Marshall and Rust, 1993;

Stolzenburg et al., 1994; Mo et al., 2003). This layered electrically active zone in the

stratiform part could be further evidence of an in situ charging process occurring

within the stratiform region (e.g., Engholm et al., 1990; Rutledge et al., 1990; Rutledge

and Petersen, 1994).

Note that other such layered source regions were evident at some individual points

in time. They are, however, hardly discernible in the composite of Fig. 14. For

instance, at 0119 UTC, roughly 60 to 80 km behind the convective region between 8.5

and 11 km altitude, there was a region of weak layered VHF activity high in the

trailing stratiform region (McCormick, 2003; Carey et al., 2003b). This additional

discharge region was at a higher altitude than and did not seem to be connected to the

main VHF source region that descended from the convective region and into the

stratiform region. Therefore, this isolated electrically active zone at upper levels toward

the rear portions of the stratiform zone (i.e., 60 km or more from the convective line)

could be even stronger evidence of an in situ charging process also occurring within

the stratiform region.

After passing the Dallas–Ft. Worth area, the lifecycle of this MCS was not yet

finished. As Figs. 5g–i and 15 show, the evolution continued rather steadily. Fig. 15a

at 0715 UTC on 8 April documents a single, well-defined line of high CG flash

activity from the Gulf of Mexico coast to southern Arkansas. Only the part of the line

forming the southernmost tip of the MCS in Fig. 12b has hardly advanced during these

5-h period and stays over central southern Texas. But also in this part of the line, the

MCS type has now changed to clear LLTS characteristics everywhere, cf. Fig. 5h,i.

Many CG+ flashes are visible in the now very large trailing stratiform part of the

MCS. Interestingly, the coldest cloud tops now occur just behind the leading line of

CG flash activity and most of the CG+ discharges appear to be located in the center of

this region of coldest, highest cloud tops. Note that these lowest cloud top brightness

temperatures near �70 8C are several degrees below the minimum TB values observed



Fig. 15. As Fig. 12, but for 8 April, 0715 (a) and 0915 UTC (b). For (a), cf. Fig. 5h,i. In (b), the first signs of

linear MCS decay become apparent.
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in the Dallas–Ft. Worth region earlier from 0100 to 0200 UTC (cf. Fig. 12). Fig. 15b

illustrates the first signs of a decay in this long-lived LLTS MCS at 0915 UTC on 8

April. The system now starts to disintegrate into a western and an eastern part and, in

each of these, CG lightning activity begins to lose its linear character. Instead, there is

a trend towards clustering of CG flashes into individual cells again. Minimum cloud

top brightness temperatures are still below �65 8C, but not as low as 2 h before in

Fig. 15a. One feature of the mature LLTS stage remains, however: The dominance of

CG+ flashes in the trailing stratiform regions of the cloud, especially in the newly

separated eastern part of the MCS. After crossing the Gulf of Mexico coast, the system

mainly propagated eastward along the coastline, degrading in size and intensity and

acquiring a more elliptical shape of its cloud shield. However, well into 9 April, the

now rapidly decaying MCS remained electrically active even at this very late stage of

its evolution.
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4. Discussion

4.1. Formation stage of the MCS and Throckmorton supercell

The most striking features in the GOES East satellite images and the NLDN CG flash

data during the formation of the MCS over Texas were the ring-like cloud top features

observed at several locations along the developing squall line, and simultaneously the 15-

min oscillations of CG flash multiplicity, especially for the CG+ discharges, in the storms

around Throckmorton county.

The also observed V-shaped cumulonimbus overshoot of the Throckmorton supercell is

known to be a characteristic of severe storms (Maddox, 1981; McCann, 1983; Adler et al.,

1985; Heymsfield and Blackmer, 1988). However, features exactly like the several

observed ring-like cloud top structures during MCS formation have rarely been depicted

before (the exceptions being, e.g., Heymsfield et al., 1983a,b; Höller and Reinhardt, 1986).

Other authors like Adler and Fenn (1979a,b) show similar structures, but on a smaller scale

of approximately 50 km radius. Bartels and Maddox (1991) discuss smaller circular, but

not ring-like, clusters of storm cells and the later formation of mid-level cyclonic vortices

from these small MCCs. Heymsfield et al. (1983a,b) present results for internal warm

areas in cumulonimbus anvils, yet mention these only in the context of individual storms,

not clusters of them. So it appears as if further observations of developing squall lines were

necessary to clarify if the ring-like cloud top features seen in the 7–8 April case are a

relatively regular phenomenon under similar synoptic circumstances. Should this turn out

to be the case, then these observations might be more systematically tested for their

potential for severe weather early warning capability.

The Texas–Oklahoma region frequently experiences supercell thunderstorms and

MCSs in spring and early summer (e.g., Goodman and MacGorman, 1986; Holle et al.,

1994; Gilmore and Wicker, 2002). However, to the authors’ knowledge, a similar

phenomenon like the observed 15-min oscillation of CG flash multiplicity in the region of

a number of severe storms, including a tornadic supercell and developing into a linear

MCS, has not been reported before. While some researchers do not see physical reasons

for the existence of multistroke CG+ discharges at all (Mazur, 2002—personal

communication; cf. also Zajac and Rutledge, 2001; Rakov and Huffines, 2003), they

are nevertheless reported frequently, sometimes with even higher values for CG+

multiplicity as in the Throckmorton supercell (e.g., n-values up to 10 by Lyons et al.,

1998). Here, we want to discuss the NLDN data in more detail and also present some

options to explain this unexpected periodic behavior, based on currently available CG

lightning detection methods.

The first such option to explain the surprising behavior of the CG+ multiplicities would

be bcontaminationQ of the CG+ sample by weak discharges which could have been IC

flashes really. The physical meaning of positive flashes below 10 kA first return stroke

peak current has been discussed by several authors before. Cummins et al. (1998) strongly

claimed these weak CG+ lightning strikes to be IC flashes detected by the NLDN and

suggested to remove them from any CG strike analysis. Others, like Lyons et al. (1998)

discuss results indicating that these weak flashes might indeed mainly have been CG+ and

not IC discharges. This is supported by recent results of Betz et al. (2004) obtained from
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different lightning detection sensors than those of the NLDN: Their findings indicate that

only about 40% of the weak CG+ signals come from cloud regions aloft and should be

classified as IC discharges. Clearly, as stated by Orville and Huffines (1999), and reiterated

in a later publication (Orville et al., 2002): bFurther research is needed on this issueQ.
However, our available NLDN data contains only 24 weak CG+ with Imax,1 below 10 kA.

So we can definitely exclude presence of many ambiguous weak CG+ discharges in our

case.

Mixed-polarity or bipolar flashes (Rakov, 2000) might also bias the segregation into

CG+ and CG� discharges. When looking at strokes in NLDN data (or in Europe the

EUCLID data based on the same sensor types as in the NLDN), it can sometimes be seen

that strokes of different polarity occur within a very small area (say, 10 km radius) within a

short time period (say, 0.5 s). If these are grouped into flashes by a radius/time criterion,

then usually the first return stroke polarity is assigned as the overall flash polarity (and the

first return stroke peak current is assigned as flash peak current). However, either

assignment may not necessarily be adequate, as mentioned above for the peak currents

already. For instance, a reevaluation of the CG stroke data of the German BLIDS network

for the EULINOX supercell hailstorm investigated by Dotzek et al. (2001) revealed a

small but significant portion of strokes closely clustered in space and time but with

alternating polarity which could be grouped into mixed-polarity flashes by a simple radius/

time criterion.

Finally, another possible reason for the observed multiplicity oscillations might be a

statistical sampling effect by which few CG+ with high n-values (n up to 4 was observed

with CG+ in the selected sample of CG flashes) can dominate the 5-min ensembles of

mainly unistroke CG+ in the area of Fig. 10d. To clarify the influence of mixed-polarity

flashes and sample size on our results, a reanalysis of the NLDN data contained in Fig. 10

was performed. It was based on the individual stroke data as originally recorded by the

NLDN sensors and compared to results that would have arisen from the standard stroke-to-

flash algorithm.

The stroke data were segregated in the following way: Positive CG flashes with a

small (Imax,1b10 kA) first stroke were separated from the rest of the positive flashes.

Then the mixed-polarity CG flashes were distinguished by whether the first stroke was

negative or positive. Moreover, the data were checked for very short interstroke intervals

(tb1 ms) within all categories of flashes. Such short interstroke intervals can be due to

effects like: (1) a separate group of sensors detected an ionospherically reflected signal

and therefore produced a separate stroke location, or (2) the full group of sensors that

detected one particular stroke was broken up somehow by the location algorithm and the

two groups each produced a location for the same stroke. Finally, all small positive

(again, Imax,1b10 kA) subsequent strokes of multistroke CG discharges were looked up.

Interestingly, all but one of these also had an interstroke interval of t b1 ms relative to

the preceding stroke.

In a second step, all of the CG strokes that met one of these criteria (interstroke interval

below 1 ms or weak positive subsequent stroke) were removed and only then the stroke-to-

flash algorithm was applied. Afterwards, we reassessed whether the CG flashes were

mixed-polarity, purely positive or purely negative. Multiplicities for flashes found to be

purely positive or purely negative were also recalculated at this stage.
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The remaining mixed-polarity flashes were then excluded from the reanalysis, as a

detailed analysis of mixed-polarity flashes is out of the realm of this LLTS MCS study.

Clearly, this reanalysis procedure had a bigger impact on the CG+ flash multiplicities than

the simple removal of flashes with small positive first return strokes—the only action that

could have been applied to the CG flash data generally used throughout this study.

Before the reanalysis, the flash data consisted of a total of 1711 CG flashes (1936

strokes) splitting into 534 CG+ and 1177 CG� flashes. Of the 534 CG+ discharges, only

24 had small first return stroke currents of Imax,1b10 kA, leaving 510 unambiguous CG+

flashes. After reanalysis of the stroke data, the following numbers resulted: 487 CG+

flashes with Imax,1N10 kA, 23 weak CG+ flashes with Imax,1b10 kA and 1155 CG�
discharges. Of the 47 mixed-polarity flashes, 23 had a positive first return stroke and 24

had a negative first return stroke.

When comparing these reanalyzed data with the present Figs. 10 and 11, significant

differences merely appear in the flash multiplicities, so Fig. 16 shows only these. Fig. 16a

should be compared to Fig. 10b, and Fig. 16b corresponds to Fig. 11b. In general, the

average multiplicities are lowered by the reanalysis procedure. Two things remain robust

features in the data, however: (1) the average CG+ multiplicities are higher than those of

the CG� flashes, especially in Fig. 16a, and (2) the CG+ multiplicitiy in Fig. 16a still

displays rather regular oscillations over the 4-h period from 1900 to 2300 UTC. In Fig.

16b, the sudden peak in CG+ multiplicity shortly before the end of the tornadic phase is

retained. The weaker secondary peak of n visible in Fig. 11b a few minutes before the

tornadic phase is gone in the reanalyzed data. So for most of the tornadoes’ lifetimes, the

CG+ flashes within 30 km range consist of only one stroke.

To sum up our stroke reanalysis, we can quantify that only 23 of the multistroke CG+

flashes on 7 April 2002 consisted of strokes with alternating polarity. As was the case for

the weak CG+ flashes with Imax,1b10 kA, this small number does not significantly affect

or bias our sample of CG discharges. However, the CG+ ensemble is reduced by about

10% (534 CG+ before, 487 CG+ after the reanalysis) due to subtraction of bipolar and

weak CG+ discharges.
a

b

Fig. 16. Ground flash multiplicities n (black=CG�, gray=CG+) for the Throckmorton supercell region as in

Figs. 10 and 11, but using the reanalyzed NLDN stroke data. Tornado period is marked by dashed vertical lines.

Panel (a) based on 1642 CG flashes (487 CG+) corresponds to Fig. 10b. Panel (b) contains 185 CG flashes (32

CG+) and should be compared to Fig. 11b.
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Therefore, sample size remains as the only candidate for a technical reason to explain

the CG+ flash multiplicity oscillations. A sample size of about 500 CG+ is certainly

marginal but not so small as to make an oscillatory sampling error like this very probable,

also in light of the fact that the CG� flashes showed a similar, but less pronounced

periodicity in the n-values. Besides, it would be a notable coincidence to have such a

sampling error quite uniformly distributed over a 4-h time frame. Nevertheless, until 2100

UTC, the most CG+ flashes in any 5-min period is 10 and, after 2100 UTC, it rarely gets

above 20. This is one reason for a certain noise level in the multiplicities for CG+ flashes.

The average CG+ multiplicity in many 5-min periods does exceed the average CG�
multiplicity, however. We have to stress that the effects of the marginal sample size are

alleviated by the fact that we have computed 5-min running means of all time series in

Figs. 10 and 11. As we are dealing with a physically distinct phenomenon in our analysis

(the electrical activity of the storms in the Throckmorton region), we cannot increase the

data sample by simply enlarging the domain size or time frame without blurring the results

by lightning activity from other, more distant storms. Instead, we have to settle for the

available sample of NLDN-detected flashes.

However, as the use of NLDN CG stroke data provided much more insight than the

preprocessed NLDN flash data in this special analysis, we can draw the following

conclusion: For future scientific analyses of CG flash activity and storm evolution, in

accordance with the discussion by Rakov and Huffines (2003), we think it is advisable to

mainly rely on stroke data instead of preprocessed flashes, to be able to retrace any

sampling effects which may arise from any stroke-to-flash algorithm.

Yet, aside from these more technical reasons, the 15-min period of mainly CG+ flash

multiplicity might also be related to cloud physical effects. Assuming an overshooting

cloud top height of 14–15 km in the early MCS formation stage, it becomes apparent that a

time interval of about 15 min corresponds to the typical timescale of an air parcel ascending

from the near surface inflow layer to the overshooting top. This would require an average

updraft speed of 60 km h�1 or 17 m s�1. This number is reasonable for an average

thunderstorm updraft velocity (which may have local peak values well above that). While

surface parcels travel towards the storm tops in undiluted updrafts, the air at the anvil level

is horizontally displaced by a similar distance, feeding new ice crystals into the downwind

flank of the storms’ cores and to the stratiform regions in the anvil (e.g., Danielsen, 1982).

This process of supplying fresh cloud liquid water to the storm (Saunders et al., 1991)

in the updraft cores, and pristine ice crystals to the stratiform region (Baker et al., 1999), is

continuous in the first place. The question then to clarify is why that process develops

some periodicity, reflected by the 15-min oscillations in CG flash multiplicity. This may

arise due to a pulsation of the storms’ updrafts, and the reason for this pulsation could be a

phenomenon of self-organization between the neighboring thundercells. Recall Figs. 6b, 7

and 8, which proved that the thunderstorms later merging into the northern part of the

LLTS MCS were more or less circular aligned with typical distances of 20 to 30 km. The

region from which large storms draw their boundary layer inflow air has a comparable

radius of influence. As soon as one storm’s continuous supply of near-surface air is

disturbed, for instance by the approaching outflow of another storm, a weakening and

subsequent oscillation in updraft intensity can set in. This will then have a feedback on any

nearby storm competing for the same boundary layer air bcatchmentQ, possibly initiating



N. Dotzek et al. / Atmospheric Research 76 (2005) 127–166 157
the self-organization required to lead to an oscillation in a whole ensemble of storms, with

a repetition time related to the average timescale of an air parcel rising from the boundary

layer to the storm’s top.6

Based on the available data, we cannot make any clear judgement which of the above

effects may have contributed most to the development of the oscillation in especially the

CG+ flash multiplicity. Yet we report this interesting and unexpected observation as a

basis for future investigations of the lightning activity in similarly clustered stroms.

The close-up on the Throckmorton storm (cf. Fig. 11) revealed most of the CG+ flashes

north of the tornadoes, supporting the concept of a tilted dipole as in Fig. 1 (cf. Rutledge et

al., 1990; Hamlin et al., 2003). CG+ discharge multiplicity equaled 1 during most of the

tornadoes’ lifetime, and there were high positive first return stroke currents at the end of

the tornadic phase. However, these were likely from the convective core of the storm, not

from a stratiform part as in the MCS analysis by Petersen and Rutledge (1992). The CG�
multiplicity was generally low compared to results by Rakov and Huffines (2003) and

there was a minimum of CG flash rate about halfway into the tornadoes’ lifetime.

This parallels observations of unusually low negative multiplicities approaching n =1 in

some, mostly northern High Plains severe storms with an anomalously high (more than

25%) CG+ percentage (Branick and Doswell, 1992; Curran and Rust, 1992; Lyons et al.,

1998; Carey and Rutledge, 2003). Negative first return stroke current magnitudes in these

cases were also typically low compared to regional climatological means (Orville et al.,

2002), much alike in the Throckmorton supercell producing over 25% CG+ strikes for most

periods and CG� first stroke currents relatively low compared to climatological annual

(and warm season) median values in that part of Texas. While in this case the median of

Imax,1 is about�12 to�15 kA, more typical numbers averaged over all storms in the warm

season would lie in the �20 to �25 kA range (MacGorman and Morgenstern, 1998).

What is called banomalousQ with thunderstorms certainly depends on region and season

(cf. Seimon, 1993; Stolzenburg, 1994; Orville and Huffines, 2001; Lang et al., 2000; Lang

and Rutledge, 2002). Based on earlier studies and climatological experience with lightning

in severe storms (e.g., Reap and MacGorman, 1989; MacGorman and Burgess, 1994;

Zajac and Rutledge, 2001; Carey et al., 2003a; Carey and Rutledge, 2003), these types of

storms are probably only marginally anomalous over northern Texas during the month of

April. Based on the work by Carey et al. (2003a), our estimate is that among all severe

storms in this region, on average 10% to 30% or possibly a higher percentage may behave

similar to the Throckmorton cell during spring, and we can say with some confidence that

these types of storms do occur in northern Texas during the month of April in any given

year. So the Throckmorton supercell appears to have been an anomalous storm only when

compared to nationwide USA annual statistics.

4.2. Mature LLTS stage of the MCS

The 7–8 April 2002 MCS was a classic LLTS MCS while passing over the Dallas–Ft.

Worth region. It provided an opportunity to study the radar and electrical evolution of the
6 Note that this bears some resemblance to recently developed concepts concerning updraft regeneration in

multicell convection, yet on a larger scale. See http://www.caps.ou.edu/~dweber/bubbles.html for an overwiew.

http://www.caps.ou.edu/~dweber/bubbles.html
http://www.caps.ou.edu/~dweber/bubbles.html
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convective and stratiform regions, even though the LDAR II network had decreased

source detection efficiency because it was not operating at full capacity during this severe

weather case.

McCormick (2003) demonstrated that the z30 dBZ radar echo volume aloft

between the 0 and �40 8C temperature levels was larger and the rainfall rates were

higher in the convective region than in the stratiform region of the LLTS MCS. These

conditions indicate the presence of larger hydrometeors suspended by strong updrafts

in mixed-phase microphysical conditions and provide some support for the non-

inductive charging mechanism in the convective line. Under normal conditions, large

hydrometeors (at T b�10 8C and in the presence of significant liquid water content)

charge negatively in the convective region, and large aggregates (at T b�10 8C, in the

presence of low liquid water content) charge positively in the stratiform region (e.g.,

Saunders et al., 1991), resulting in a predominance of CG� discharges in the

convective line and CG+ flashes in the stratiform region. Accordingly, large VHF

lightning source densities were present in the convective region. Since the transition

zone of an LLTS MCS generally lacks upward motions due to compensating

subsidence for mass continuity reasons next to the convective core, the non-inductive

charging mechanism is inefficient and little or no CG lightning flashes are produced in

this region. Thus, the convective region was the dominant charging region present in

this MCS, consistent with conceptual models and earlier lightning studies (e.g., Mazur

and Rust, 1983; Rutledge and MacGorman, 1988).

Within the convective region of the 7–8 April 2002 MCS, two dominant lightning

regions were detected by the LDAR II network in the vertical. Since negative polarity

breakdown in the positive charge region is inherently noisier in the VHF band than

positive polarity breakdown in the negative charge region, the two VHF source maxima

and local minimum in between likely correspond to the three dominant charge regions of a

tripole (Williams, 1989, leftmost sketch in Fig. 1) as follows: The upper positive charge

region likely corresponds to the upper VHF source maximum (centered at 10 km AGL or

about �45 8C), the main negative charge region is likely centered on the relative minimum

in VHF sources (centered at 6.5 km AGL or about �20 8C), and the lower positive region

is likely associated with the lower VHF source maximum (centered at about 4.5 km AGL

or �5 8C). This postulated tripole charge arrangement agrees with past observational

results based on lightning measurements (Williams, 1989), the theory of non-inductive

charging (e.g., Saunders et al., 1991) and the charge breakdown processes within the VHF

range. As observed, predominantly CG� lightning flashes are generally produced from

this tripole charge arrangement as illustrated in Fig. 1.

Within the stratiform region of the 7–8 April 2002 MCS, both NLDN and LDAR II

lightning flash rates showed similar temporal trends and also resembled the evolution of

the z30 dBZ radar echo volume aloft between the �10 and �40 8C temperature levels

throughout the period (McCormick, 2003). Her radar echo volume analysis was consistent

with a precipitation-based charging mechanism, which was likely tied to snow (or

aggregates of ice crystals). So the observed correlation suggests that the presence of these

larger ice aggregates or snow (i.e., N30 dBZ) due to differential sedimentation in this

temperature range was critical for electrification within the stratiform region via either

charge advection or in situ charging.
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Within the stratiform region, one sloping primary active charge layer was detected by

the LDAR II network. This charge layer appears to have been advected from the upper

(positive) charge layer of the convective region into the stratiform region. The charge

region slopes downward from upper levels (g10 km AGL) within the convective line to

low altitudes of about 3.5 to 7 km AGL at the leading edge of, and well into, the stratiform

region, corresponding to 0 to �25 8C within this stratiform part of the MCS. Above the

melting layer, a combination of an in situ process and charge advection may explain the

formation of the layered charge structure from 3.5 to 6 km AGL (0 to �20 8C). Note that
Carey et al. (2005) did find mean upward motion above the melting layer in the stratiform

region using a pseudo-dual-Doppler technique on KFWS data, so cloud water was likely

available for non-inductive charging also. Given past modeling and laboratory results,

there might not be a strong primary role for an inductive charging mechanism with ice–ice

interactions and it does not seem like there would be enough ice–water interactions to

make a difference given low liquid water content. However, there are other precipitation-

(or snow-) based charging mechanisms that could be operative in the stratiform region. For

example, charge layers found at or near 0 8C have been observed in several balloon-borne

E-field studies (e.g., Shepherd et al., 1996). Therefore, these layers may very well be

associated with melting of snow and not non-inductive charging. The 16 June case shows

layering of lightning (and hence charge) between 7 and �3 8C in the stratiform region.

This is likely not due to non-inductive charging.

Again, as negative polarity breakdown in the positive charge region is an efficient

producer of VHF sources, their horizontally extended maximum above the melting layer is

likely associated with net positive charge. Fig. 14 had revealed that this positive space

charge is connected with the advection and sedimentation of the positively charged

hydrometeors from the upper parts of the convective region. So it is unlikely that this

positive charge can be attributed to a lower positive charge layer as proposed in the tripole

model (cf. Fig. 1). As a result, presence of an inverted dipole in the stratiform region

becomes the most likely explanation for the observed VHF source structure and the large

percentage of CG+ flashes from the trailing stratiform region. Another charge layer at

greater heights (8.5 to 11 km AGL) that is spatially distinct from the other zones is likely

best explained by in situ charging. With the absence of strong vertical motions, the

stratiform region was an ineffective charge producer. Therefore, the relatively low

observed lightning flash rates are consistent with theory.

Within the 16 June 2002 LLTS MCS observed by the same LDAR II network, Carey et

al. (2005) found generally similar patterns in the line-normal structure of VHF lightning

sources: (1) two active VHF zones in the convective region at similar heights, (2) a

slanting and descending lightning zone from the top of the convection rearward to the

melting layer in the stratiform region, and (3) horizontal layers of VHF sources above the

melting layer at similar heights. Since all seven sensors were operational on 16 June, the

general consistency gives us confidence in our results for this study. Specific differences

between the cases occurred over the stratiform region where the LDAR II network on 16

June 2002 was able to consistently resolve two to three horizontal layers at 4.5, 6–6.5 and

8.5–9 km (Carey et al., 2005). Assuming these are positive charge layers as before, the

results by Carey et al. (2005) are strikingly similar to the inferred positive charge regions

from the E-field balloon observations of Marshall and Rust (1993) in a symmetric LLTS
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MCS. Because of the decreased detection efficiency of the LDAR II for the 7–8 April

2002 MCS, the lower two horizontal layers may be merged into one thick layer and the

upper layer was less frequently observed.
5. Conclusions

Comparison of total lightning activity with Doppler radar and geostationary satellite

observations of the 7–8 April 2002 MCS showed the following lightning characteristics

coupled to storm evolution from isolated supercells to a large linear MCS with trailing

stratiform region:

! Satellite images revealed several ring-like cloud top structures with a diameter of about

100 km after the first 3 h of MCS formation, prior to tornado genesis in the storms.

! The Throckmorton supercell was characterized by a V-shaped cloud top overshoot,

high CG+ percentage and low average CG� first stroke current and flash multiplicity.

Together with the downshear shift of CG+ discharges, these observations point to

presence of a tilted dipole in the storm.

! Mainly CG+, but also CG� average flash multiplicity in the Throckmorton tornadic

supercell showed rather uniform oscillations with an estimated period of about 15 min.

This new result, however, needs further verification in future case studies, due to the

marginal sample of flashes produced by this storm.

! In the mature MCS, the radar versus lightning activity comparison revealed two

dominant discharge regions at the back of the convective leading edge, and a gentle

descent of the upper discharge region into the trailing stratiform region, apparently

coupled to hydrometeor sedimentation. CG+ flashes from the stratiform region had

high first return stroke peak currents.

! There were indications of possible in situ charging processes in the trailing stratiform

part of the mature MCS well behind the transition zone and above the melting layer.

Also, the integration of LDAR II and WSR-88D radar data yielded some evidence for

an inverted dipole in the stratiform region of this LLTS MCS.

! From our analysis of CG flash activity and storm evolution, it proved more efficient and

advisable to rely on individual return stroke data instead of segregated flashes.

Aside from 3D total lightning in MCSs, future studies could couple more operationally

available NLDN observations of various severe storm types with radar and geostationary

satellite data. This would reveal if regular oscillations in CG flash multiplicity or ring-like

cloud top structures were frequent phenomena or just peculiarities of the MCS chosen

here.
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Appendix A. LDAR II network performance on 7–8 April 2002

The LDAR II system detects pulses of VHF radiation (bsourcesQ) produced by the

electrical breakdown processes of lightning in a 5 MHz band currently centered between

61 and 64 MHz. The VHF sources are used to reconstruct the propagation of individual IC

or CG flashes in three dimensions with a time-of-arrival procedure (cf. MacGorman and

Rust, 1998; Rakov and Uman, 2003).

The detection efficiency of the LDAR II system can be estimated from the sensor

characteristics and the distribution of radiated signals, which in this case are source

powers. Source power estimates from another VHF time-of-arrival system, the New

Mexico Tech Lightning Mapping Array (Rison et al., 1999; Krehbiel et al., 2002), have

been presented by Thomas et al. (2001). The source power distribution and sensor

characteristics are used to produce a flash detection efficiency estimate for the individual

VHF sources. To do so, we assume that each flash produces 50 sources, a rather

conservative number given the results of Boccippio et al. (2001b). We further assume that

at least two sources must be detected before we acknowledge the flash. Using this method

with the five sensors that were functioning during the 7–8 April 2002 storms, we estimate

a flash detection efficiency of 60% within the perimeter of the network and 20% at a

distance of 120 km from Dallas–Ft. Worth international airport.

For an exemplary altitude of 7.5 km AGL, Fig. 17a shows how the loss of the northern

and northeastern Dallas–Ft. Worth LDAR II sensors B and C led to decreased lightning

flash detection efficiency from over 90% (typical value) to 60% within the ring formed by

the network’s six peripheral sensors and from approximately 90% (typical value) to about

20% at a 120 km range from the network’s central sensor. Note that the flash detection

efficiency is relatively insensitive to altitude unless all sources in the flash are below about

3 km AGL, and except for the radio horizon effect at larger ranges. For the 7–8 April case,

however, the detection efficiency is not good enough for this effect to show up: It is

already approaching zero before reaching the radio horizon. Fig. 17b depicts the location

accuracy of the reduced LDAR II network. The location accuracy values does not change

greatly from 100 to 200 m near the center of the 5-sensor network and up to 4 km at

distances of about 120 km from the 5-sensor LDAR II network center, depending on

azimuth: Compared to the detection efficiency in Fig. 17a, the location accuracy isopleths

show a more notable deformation due to the loss of sensors B and C in the period of 7–8

April 2002. Note that the axis of smallest location accuracy deformation corresponds very



Fig. 17. Average values of (a) detection efficiency in % and (b) location accuracy in km at a height of 7.5 km

AGL for the reduced Dallas–Ft. Worth LDAR II network with only five operational sensors (5) on 7–8 April

2002. The non-operational northern and northeastern sensors B and C are not depicted (cf. Fig. 2).
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well with the line-parallel direction of the 7–8 April 2002 MCS. Due to this coincidence,

the effects of reduced location accuracy on the interpretation of our MCS total lightning

observations are minimized.

As discussed in detail by Rison et al. (2001), it is normally preferable to require that at

least six sensors contribute to every source location in order to minimize the probability

that local noise at one site might correlate accidentally and contribute to a false source

location. Of course, it was not possible to use this requirement in the Dallas–Ft. Worth

network for the 7–8 April storms. To minimize the effects of the occasional false

positions that result when only five sensors are used to determine source locations, we

utilized a data filtering procedure that involved eliminating sources that were relatively

isolated. This filter varied as a function of range. Within 80 km of the center of the

Dallas–Ft. Worth network, any source location that did not have at least one other source

within 3 km in the horizontal, 4 km in the vertical and 200 ms in time was removed from

the data after all locations were calculated. Beyond 80 km, any source location that did

not have at least one other source within 15 km in the horizontal, 20 km in the vertical

and 500 ms in time was removed from the data. This procedure is likely to have little

effect on flash detection efficiency because a typical flash produces a large number of

sources.
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Dotzek, N., Höller, H., Théry, C., Fehr, T., 2001. Lightning evolution related to radar-derived microphysics in the

21 July 1998 EULINOX supercell storm. Atmos. Res. 56, 335–354.

Dotzek, N., Rabin, R.M., MacGorman, D.R., Demetriades, N.W.S., Holle, R.L., 2003. Lightning evolution in the

severe storms in Texas on 7 April 2002. Preprints. 12th Int. Conf. on Atmos. Elec., 9–13 June 2003,

Versailles, pp. 87–90.

Engholm, C.D., Williams, E.R., Dole, R.M., 1990. Meteorological and electrical conditions associated with

positive cloud-to-ground lightning. Mon. Weather Rev. 118, 470–487.
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