420 research outputs found

    Explaining the elongated shape of 'Oumuamua by the Eikonal abrasion model

    Get PDF
    The photometry of the minor body with extrasolar origin (1I/2017 U1) 'Oumuamua revealed an unprecedented shape: Meech et al. (2017) reported a shape elongation b/a close to 1/10, which calls for theoretical explanation. Here we show that the abrasion of a primordial asteroid by a huge number of tiny particles ultimately leads to such elongated shape. The model (called the Eikonal equation) predicting this outcome was already suggested in Domokos et al. (2009) to play an important role in the evolution of asteroid shapes.Comment: Accepted by the Research Notes of the AA

    Baryon Number-Induced Chern-Simons Couplings of Vector and Axial-Vector Mesons in Holographic QCD

    Full text link
    We show that holographic models of QCD predict the presence of a Chern-Simons coupling between vector and axial-vector mesons at finite baryon density. In the AdS/CFT dictionary, the coefficient of this coupling is proportional to the baryon number density, and is fixed uniquely in the five-dimensional holographic dual by anomalies in the flavor currents. For the lightest mesons, the coupling mixes transverse ρ\rho and a1a_1 polarization states. At sufficiently large baryon number densities, it produces an instability, which causes the ρ\rho and a1a_1 mesons to condense in a state breaking both rotational and translational invariance.Comment: 4 page

    Sharp Global Bounds for the Hessian on Pseudo-Hermitian Manifolds

    Full text link
    We find sharp bounds for the norm inequality on a Pseudo-hermitian manifold, where the L^2 norm of all second derivatives of the function involving horizontal derivatives is controlled by the L^2 norm of the sub-Laplacian. Perturbation allows us to get a-priori bounds for solutions to sub-elliptic PDE in non-divergence form with bounded measurable coefficients. The method of proof is through a Bochner technique. The Heisenberg group is seen to be en extremal manifold for our inequality in the class of manifolds whose Ricci curvature is non-negative.Comment: 13 page

    A topological classification of convex bodies

    Get PDF
    The shape of homogeneous, generic, smooth convex bodies as described by the Euclidean distance with nondegenerate critical points, measured from the center of mass represents a rather restricted class M_C of Morse-Smale functions on S^2. Here we show that even M_C exhibits the complexity known for general Morse-Smale functions on S^2 by exhausting all combinatorial possibilities: every 2-colored quadrangulation of the sphere is isomorphic to a suitably represented Morse-Smale complex associated with a function in M_C (and vice versa). We prove our claim by an inductive algorithm, starting from the path graph P_2 and generating convex bodies corresponding to quadrangulations with increasing number of vertices by performing each combinatorially possible vertex splitting by a convexity-preserving local manipulation of the surface. Since convex bodies carrying Morse-Smale complexes isomorphic to P_2 exist, this algorithm not only proves our claim but also generalizes the known classification scheme in [36]. Our expansion algorithm is essentially the dual procedure to the algorithm presented by Edelsbrunner et al. in [21], producing a hierarchy of increasingly coarse Morse-Smale complexes. We point out applications to pebble shapes.Comment: 25 pages, 10 figure

    Formation of sharp edges and planar areas of asteroids by polyhedral abrasion

    Full text link
    While the number of asteroids with known shapes has drastically increased over the past few years, little is known on the the time-evolution of shapes and the underlying physical processes. Here we propose an averaged abrasion model based on micro-collisons, accounting for asteroids not necessarily evolving toward regular spheroids, rather (depending on the fall-back rate of ejecta) following an alternative path, thus confirming photometry-derived features, e.g. existence of large, relatively flat areas separated by edges. We show that our model is realistic, since the bulk of the collisions falls into this category.Comment: 17 pages, 3 figures, accepted by Astrophysical Journa

    Lepton pairs from thermal mesons

    Full text link
    We study the net dielectron production rates from an ensemble of thermal mesons, using an effective Lagrangian to model their interaction. The coupling between the electromagnetic and the hadronic sectors is done through the vector meson dominance approach. For the first time, a complete set of light mesons is considered. We include contributions from decays of the type V~(PS)~→\rightarrow~PS~(V)~+~e+ e−e^+~e^-, where V is a vector meson and PS is a pseudoscalar, as well as those from binary reactions PS~+~PS, V~+~V, and V~+~PS~→ e+e−\rightarrow~e^+e^-. Direct decays of the type V~→ e+e−\rightarrow~e^+ e^- are included and shown to be important. We find that the dielectron invariant mass spectrum naturally divides in distinct regions: in the low mass domain the decays from vector and pseudoscalar mesons form the dominant contribution. The pion--pion annihilation and direct decays then pick up and form the leading signal in an invariant mass region that includes the ρ−ω\rho - \omega complex and extends up to the ϕ\phi. Above invariant mass M ≈M\ \approx~1~GeV other two-body reactions take over as the prominent mechanisms for lepton pair generation. These facts will have quantitative bearing on the eventual identification of the quark--gluon plasma.Comment: In ReVTeX 3.0, 9 figs. available from above email address. McGill 93/8, TPI-MINN-93/19-

    On the equilibria of finely discretized curves and surfaces

    Get PDF
    Our goal is to identify the type and number of static equilibrium points of solids arising from fine, equidistant nn-discretrizations of smooth, convex surfaces. We assume uniform gravity and a frictionless, horizontal, planar support. We show that as nn approaches infinity these numbers fluctuate around specific values which we call the imaginary equilibrium indices associated with the approximated smooth surface. We derive simple formulae for these numbers in terms of the principal curvatures and the radial distances of the equilibrium points of the solid from its center of gravity. Our results are illustrated on a discretized ellipsoid and match well the observations on natural pebble surfaces.Comment: 21 pages, 2 figure

    Quantum Deformations of Space-Time Symmetries with Mass-Like Deformation Parameter

    Full text link
    The difficulties with the measurability of classical space-time distances are considered. We outline the framework of quantum deformations of D=4 space-time symmetries with dimensionfull deformation parameter, and present some recent results.Comment: 4 pages, LaTeX, uses file stwol.sty, to be published in the Proceedings of XXXII International Rochester Conference in High Energy Physics (Warsaw, 24.07-31.07 1996
    • 

    corecore